Exercises for Algebra 1
List 3

Instituto Nacional de Matemática Pura e Aplicada
To be sent to xia.xiao@impa.br until 30.3.2020

Exercise 1. Let A be a ring and $\left\{I_{i}\right\}_{i \in I}$ be a family of ideals in A.

1. Show that the intersection $\bigcap_{i \in I} I_{i}$ is an ideal of A.
2. For finite I, show that the product $\prod_{i \in I} I_{i}=\left(\left\{\prod a_{i} \mid a_{i} \in I_{i}\right\}\right)$ is an ideal of A that is contained in $\bigcap_{i \in I} I_{i}$. Under which assumption is $\prod I_{i}=\bigcap I_{i}$?
3. For finite I, show that $\sum I_{i}$ is indeed an ideal.
4. Let $f: A \rightarrow B$ be a ring homomorphism and I an ideal of B. Show that $f^{-1}(I)$ is an ideal of A. Show that $f^{-1}(I)$ is prime if I is prime. Is $f^{-1}(I)$ maximal if I is maximal? Is the image $f(J)$ of an ideal J of A an ideal of B ?

Exercise 2.

1. Describe all ideals of \mathbb{Z}. Which of them are principal ideals, which of them are prime and which of them are maximal?
2. Let $f \in \mathbb{R}[T]$ be of degree ≤ 2. When is (f) a prime ideal, when is it a maximal ideal? When is the quotient ring isomorphic to \mathbb{R} ? When is it isomorphic to \mathbb{C} ?

Exercise 3.

Let e_{1}, \ldots, e_{n} be pairwise coprime positive integers. Show that the underlying additive group of $\mathbb{Z} / e_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / e_{n} \mathbb{Z}$ is a cyclic group.

Exercise 4.

Let A be an integral domain and $a, b, c, d, e \in A$.

1. Show that if d is a greatest common divisor of b and c and e is a greatest common divisor of $a b$ and $a c$, then $(e)=(a d)$. Conclude that $\operatorname{gcd}(a b, a c)=(a) \cdot \operatorname{gcd}(b, c)$.
2. If A is a principal ideal domain, then d is a greatest common divisor of a and b if and only if $(a, b)=(d)$. Conclude that every two elements of a principal ideal domain have a greatest common divisor.
3. Find an integral domain A with elements $a, b, d \in A$ such that d is a greatest common divisor of a and b, but $(a, b) \neq(d)$.

Exercise 5 (Bonus exercise).
Show that the ring \mathbb{Z} satisfies the following universal property: for every ring A, there is a unique ring homomorphism $f: \mathbb{Z} \rightarrow A$. Use this and the universal property of the quotient map $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ to show that for a ring A whose underlying additive group $(A,+)$ is isomorphic to $(\mathbb{Z} / n \mathbb{Z},+)$ (as a group), there is a unique ring isomorphism $\mathbb{Z} / n \mathbb{Z} \rightarrow A$.
Remark: We say that \mathbb{Z} is an initial object in the category of rings.
*Exercise 6 (Bonus exercise). ${ }^{1}$
Show that the ring $\mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle$ is a principal ideal domain but not a Euclidean domain. This can be done along the following steps.

1. Reason that $N(a+b T)=a^{2}+a b+5 b^{2}$ defines a map $N: \mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle \rightarrow \mathbb{N}$. Show that $N(0)=0, N(1)=1$ and $N(x y)=N(x) N(y)$. Use the map N to show that the units of $\mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle$ are ± 1 and that 2 and 3 are irreducible.
Note: an element a is irreducible, if it is not zero nor a unit and if $a=b c$ implies that either b or c is a unit.
2. Show that every Euclidean domain A that is not a field contains an element $a \notin$ $A^{\times} \cup\{0\}$ such for every $b \in A$ there is an element $u \in A^{\times} \cup\{0\}$ such that $a \mid(b-u)$. Conclude that $\mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle$ is not a Euclidean domain, by considering the cases $a=2$ and $a=T$.
3. Show that N is a Dedekind-Hasse norm, i.e. for all nonzero $x, y \in \mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle$ such that y does not divide x, there are $p, q, r \in \mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle$ such that $p x=q y+r$ and $N(r)<N(y)$. Conclude that $\mathbb{Z}[T] /\left\langle T^{2}-T+5\right\rangle$ is a principal ideal domain.
[^0]
[^0]: ${ }^{1}$ Starred exercises are hard problem for those of you that search for a challenge. To balance the amount of work required to solve these exercises, starred exercises they are worth twice as many points as normal exercises.

