Exercise 1. Let A be a ring and $\{I_i\}_{i \in I}$ be a family of ideals in A.

- 1. Show that the intersection $\bigcap_{i \in I} I_i$ is an ideal of A.
- 2. For finite *I*, show that the product $\prod_{i \in I} I_i = (\{\prod a_i | a_i \in I_i\})$ is an ideal of *A* that is contained in $\bigcap_{i \in I} I_i$. Under which assumption is $\prod I_i = \bigcap I_i$?
- 3. For finite I, show that $\sum I_i$ is indeed an ideal.
- 4. Let $f : A \to B$ be a ring homomorphism and I an ideal of B. Show that $f^{-1}(I)$ is an ideal of A. Show that $f^{-1}(I)$ is prime if I is prime. Is $f^{-1}(I)$ maximal if I is maximal? Is the image f(J) of an ideal J of A an ideal of B?

Exercise 2.

- 1. Describe all ideals of \mathbb{Z} . Which of them are principal ideals, which of them are prime and which of them are maximal?
- 2. Let $f \in \mathbb{R}[T]$ be of degree ≤ 2 . When is (f) a prime ideal, when is it a maximal ideal? When is the quotient ring isomorphic to \mathbb{R} ? When is it isomorphic to \mathbb{C} ?

Exercise 3.

Let e_1, \ldots, e_n be pairwise coprime positive integers. Show that the underlying additive group of $\mathbb{Z}/e_1\mathbb{Z} \times \cdots \times \mathbb{Z}/e_n\mathbb{Z}$ is a cyclic group.

Exercise 4.

Let A be an integral domain and $a, b, c, d, e \in A$.

- 1. Show that if d is a greatest common divisor of b and c and e is a greatest common divisor of ab and ac, then (e) = (ad). Conclude that $gcd(ab, ac) = (a) \cdot gcd(b, c)$.
- 2. If A is a principal ideal domain, then d is a greatest common divisor of a and b if and only if (a, b) = (d). Conclude that every two elements of a principal ideal domain have a greatest common divisor.
- 3. Find an integral domain A with elements $a, b, d \in A$ such that d is a greatest common divisor of a and b, but $(a, b) \neq (d)$.

Exercise 5 (Bonus exercise).

Show that the ring \mathbb{Z} satisfies the following universal property: for every ring A, there is a unique ring homomorphism $f : \mathbb{Z} \to A$. Use this and the universal property of the quotient map $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ to show that for a ring A whose underlying additive group (A, +) is isomorphic to $(\mathbb{Z}/n\mathbb{Z}, +)$ (as a group), there is a unique ring isomorphism $\mathbb{Z}/n\mathbb{Z} \to A$.

Remark: We say that \mathbb{Z} is an *initial object in the category of rings*.

***Exercise 6** (Bonus exercise). 1

Show that the ring $\mathbb{Z}[T]/\langle T^2 - T + 5 \rangle$ is a principal ideal domain but not a Euclidean domain. This can be done along the following steps.

1. Reason that $N(a + bT) = a^2 + ab + 5b^2$ defines a map $N : \mathbb{Z}[T]/\langle T^2 - T + 5 \rangle \to \mathbb{N}$. Show that N(0) = 0, N(1) = 1 and N(xy) = N(x)N(y). Use the map N to show that the units of $\mathbb{Z}[T]/\langle T^2 - T + 5 \rangle$ are ± 1 and that 2 and 3 are irreducible.

Note: an element a is *irreducible*, if it is not zero nor a unit and if a = bc implies that either b or c is a unit.

- 2. Show that every Euclidean domain A that is not a field contains an element $a \notin A^{\times} \cup \{0\}$ such for every $b \in A$ there is an element $u \in A^{\times} \cup \{0\}$ such that a|(b-u). Conclude that $\mathbb{Z}[T]/\langle T^2 - T + 5 \rangle$ is not a Euclidean domain, by considering the cases a = 2 and a = T.
- 3. Show that N is a Dedekind-Hasse norm, i.e. for all nonzero $x, y \in \mathbb{Z}[T]/\langle T^2 T + 5 \rangle$ such that y does not divide x, there are $p, q, r \in \mathbb{Z}[T]/\langle T^2 - T + 5 \rangle$ such that px = qy + r and N(r) < N(y). Conclude that $\mathbb{Z}[T]/\langle T^2 - T + 5 \rangle$ is a principal ideal domain.

¹Starred exercises are hard problem for those of you that search for a challenge. To balance the amount of work required to solve these exercises, starred exercises they are worth twice as many points as normal exercises.