Exercise 1.

Show that every finite integral domain is a field.

Exercise 2 (Gaussian integers).

Let $i \in \mathbb{C}$ be a square root of -1. Show that the subset $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} | a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} . Is $\mathbb{Z}[i]$ an integral domain? Is it a field? Show that $\mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\}$ is a subring of \mathbb{C} that is a field.

Remark: $\mathbb{Z}[i]$ is called the *ring of Gaussian integers*.

Exercise 3.

Let A, B and C be rings. Show the following.

- 1. The identity map $id_A : A \to A$ is a ring homomorphism.
- 2. The composition $g \circ f : A \to C$ of two ring homomorphisms $f : A \to B$ and $g : B \to C$ is a ring homomorphism.
- 3. Given a ring homomorphism $f : A \to B$ and $a \in A$, we have f(0) = 0, f(-a) = -f(a) and $f(a^{-1}) = f(a)^{-1}$, provided a has a multiplicative inverse a^{-1} .
- 4. A ring homomorphism $f: A \to B$ is injective if and only if $f^{-1}(0) = \{0\}$.
- 5. The image $\inf f = \{f(a) | a \in A\}$ of a ring homomorphism $f : A \to B$ is a subring of B.
- 6. A ring homomorphism $f: A \to B$ is an isomorphism if and only if there is a ring homomorphism $g: B \to A$ such that $g \circ f = id_Z$ and $f \circ g = id_B$.

Exercise 4.

- 1. Show that the set $C^{\infty}(\mathbb{R})$ of all smooth functions $f : \mathbb{R} \to \mathbb{R}$ is a ring w.r.t. valuewise addition and multiplication, i.e. (f + g)(x) := f(x) + g(x) and $(f \cdot g)(x) := f(x) \cdot g(x)$. Which of the following maps are ring homomorphisms?
 - a) $ev_a : \mathbb{C}^{\infty}(\mathbb{R}) \to \mathbb{R}$ with $ev_a(f) := f(a)$ where $a \in \mathbb{R}$;
 - b) $d : \mathbb{C}^{\infty}(\mathbb{R}) \to \mathbb{C}^{\infty}(\mathbb{R})$ with $d(f) := \frac{df}{dt}$.

2. Show that the set $\mathbb{F}_p[T] = \{\sum_{i=0}^n a_i T^i | n \ge 0, a_i \in \mathbb{F}_p\}$ of polynomials with coefficients in \mathbb{F}_p forms a ring w.r.t. to the addition $\sum a_i T^i + \sum b_i T^i = \sum (a_i + b_i) T^i$ and the multiplication

$$\left(\sum_{i=0}^{n} a_i T^i\right) \cdot \left(\sum_{j=0}^{m} b_j T^j\right) := \sum_{k=0}^{n+m} \left(\sum_{i+j=k}^{n+m} a_i b_j\right) T^k.$$

Which of the following maps are ring homomorphisms?

- a) $\operatorname{ev}_c : \mathbb{F}_p[T] \to \mathbb{F}_p$ with $\operatorname{ev}_c(\sum a_i T^i) = \sum a_i c^i$ where $c \in \mathbb{F}_p$;
- b) Frob: $\mathbb{F}_p[T] \to \mathbb{F}_p[T]$ with $\sum a_i T^i \to \sum a_i^p T^i$.

Exercise 5 (Bonus exercise¹).

Show that the embedding $i : \mathbb{R} \to \mathbb{R}[T]$ of real numbers as constant polynomials is a ring homomorphism. Show that $\mathbb{R}[T]$ together with $i : \mathbb{R} \to \mathbb{R}[T]$ satisfies the following universal property: for every ring homomorphism $f : \mathbb{R} \to B$ and for every map $\tilde{f} : \{T\} \to B$, there is a unique ring homomorphism $F : \mathbb{R}[T] \to B$ such that $f = F \circ i$ and $F(T) = \tilde{f}(T)$.

Use the universal property to describe all ring homomorphisms $\mathbb{R}[T] \to \mathbb{R}[T]$. Which of them are isomorphisms?

¹Points for solutions of bonus exercises count as a bonus at the end of the course.