Exercises for Algebra 1
List 2

Instituto Nacional de Matemática Pura e Aplicada To hand in at 23.3.2020 in the exercise class

Exercise 1.

Show that every finite integral domain is a field.

Exercise 2 (Gaussian integers).
Let $i \in \mathbb{C}$ be a square root of -1 . Show that the subset $\mathbb{Z}[i]=\{a+b i \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C}. Is $\mathbb{Z}[i]$ an integral domain? Is it a field? Show that $\mathbb{Q}[i]=\{a+b i \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{C} that is a field.

Remark: $\mathbb{Z}[i]$ is called the ring of Gaussian integers.

Exercise 3.

Let A, B and C be rings. Show the following.

1. The identity map $\operatorname{id}_{A}: A \rightarrow A$ is a ring homomorphism.
2. The composition $g \circ f: A \rightarrow C$ of two ring homomorphisms $f: A \rightarrow B$ and $g: B \rightarrow C$ is a ring homomorphism.
3. Given a ring homomorphism $f: A \rightarrow B$ and $a \in A$, we have $f(0)=0, f(-a)=$ $-f(a)$ and $f\left(a^{-1}\right)=f(a)^{-1}$, provided a has a multiplicative inverse a^{-1}.
4. A ring homomorphism $f: A \rightarrow B$ is injective if and only if $f^{-1}(0)=\{0\}$.
5. The image $\operatorname{im} f=\{f(a) \mid a \in A\}$ of a ring homomorphism $f: A \rightarrow B$ is a subring of B.
6. A ring homomorphism $f: A \rightarrow B$ is an isomorphism if and only if there is a ring homomorphism $g: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{Z}$ and $f \circ g=\operatorname{id}_{B}$.

Exercise 4.

1. Show that the set $C^{\infty}(\mathbb{R})$ of all smooth functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a ring w.r.t. valuewise addition and multiplication, i.e. $(f+g)(x):=f(x)+g(x)$ and $(f \cdot g)(x):=$ $f(x) \cdot g(x)$. Which of the following maps are ring homomorphisms?
a) $\mathrm{ev}_{a}: \mathbb{C}^{\infty}(\mathbb{R}) \rightarrow \mathbb{R}$ with $\operatorname{ev}_{a}(f):=f(a)$ where $a \in \mathbb{R}$;
b) $d: \mathbb{C}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}^{\infty}(\mathbb{R})$ with $d(f):=\frac{d f}{d t}$.
2. Show that the set $\mathbb{F}_{p}[T]=\left\{\sum_{i=0}^{n} a_{i} T^{i} \mid n \geq 0, a_{i} \in \mathbb{F}_{p}\right\}$ of polynomials with coefficients in \mathbb{F}_{p} forms a ring w.r.t. to the addition $\sum a_{i} T^{i}+\sum b_{i} T^{i}=\sum\left(a_{i}+b_{i}\right) T^{i}$ and the multiplication

$$
\left(\sum_{i=0}^{n} a_{i} T^{i}\right) \cdot\left(\sum_{j=0}^{m} b_{j} T^{j}\right):=\sum_{k=0}^{n+m}\left(\sum_{i+j=k} a_{i} b_{j}\right) T^{k} .
$$

Which of the following maps are ring homomorphisms?
a) $\mathrm{ev}_{c}: \mathbb{F}_{p}[T] \rightarrow \mathbb{F}_{p}$ with $\mathrm{ev}_{c}\left(\sum a_{i} T^{i}\right)=\sum a_{i} c^{i}$ where $c \in \mathbb{F}_{p}$;
b) Frob: $\mathbb{F}_{p}[T] \rightarrow \mathbb{F}_{p}[T]$ with $\sum a_{i} T^{i} \rightarrow \sum a_{i}^{p} T^{i}$.

Exercise 5 (Bonus exercise ${ }^{1}$).
Show that the embedding $i: \mathbb{R} \rightarrow \mathbb{R}[T]$ of real numbers as constant polynomials is a ring homomorphism. Show that $\mathbb{R}[T]$ together with $i: \mathbb{R} \rightarrow \mathbb{R}[T]$ satisfies the following universal property: for every ring homomorphism $f: \mathbb{R} \rightarrow B$ and for every map \tilde{f} : $\{T\} \rightarrow B$, there is a unique ring homomorphism $F: \mathbb{R}[T] \rightarrow B$ such that $f=F \circ i$ and $F(T)=\tilde{f}(T)$.

Use the universal property to describe all ring homomorphisms $\mathbb{R}[T] \rightarrow \mathbb{R}[T]$. Which of them are isomorphisms?

[^0]
[^0]: ${ }^{1}$ Points for solutions of bonus exercises count as a bonus at the end of the course.

