Exercises for Algebra 1
List 15

Instituto Nacional de Matemática Pura e Aplicada
To be sent to xia.xiao@impa.br until 26.5.2020

Exercise 1.

Consider the group homomorphism $\varphi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ given by the matrix

$$
\left(\begin{array}{ccc}
2 & 4 & 6 \\
8 & 10 & 12 \\
14 & 16 & 18
\end{array}\right)
$$

Determine the Smith normal form of φ and a decomposition of $\mathbb{Z}^{3} / \operatorname{im} \varphi$ into cyclic and indecomposable factors.

Exercise 2.

Let k be a field and $M=k^{3}$ be the $k[T]$-module where T acts as the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

1. Calculate the characteristic polynomial and the minimal polynomial of this matrix, and determine the invariant factors and the elementary divisors of M.
2. Let $N=k$ be $k[T]$-module where T acts as 1 . Show that there is a $k[T]$-module P and a split exact sequence of the form

$$
0 \quad \longrightarrow \quad N \quad \xrightarrow{\iota} \quad M \quad \xrightarrow{\pi} \quad P \quad \longrightarrow \quad 0 .
$$

3. Show that $M \otimes_{k[T]} N \simeq N$ and that the sequence

$$
0 \quad \longrightarrow \quad N \otimes_{k[T]} N \quad \xrightarrow{\iota_{N}} \quad M \otimes_{k[T]} N \quad \xrightarrow{\pi_{N}} \quad P \otimes_{k[T]} N \quad \longrightarrow \quad 0
$$

is exact.

Exercise 3.

Let A and B be rings with 6 elements. Show that there is a unique ring isomorphism $A \rightarrow B$.

Exercise 4.

Consider the plane affine curve C given by $f=X^{2}-X Y+Y^{2}-X-Y+1$.

1. Find all singular points of C.
2. Show that $\mathcal{O}(C)$ is not a principal ideal domain.

Exercise 5.

Let k be a field and M a k-vector space with basis $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. Given elements $m=$ $\sum_{i=1}^{4} x_{i} . b_{i}$ and $n=\sum_{i=1}^{4} y_{i} . b_{i}$ of M, we can write $m \wedge n \in \Lambda^{2} M$ as $\sum_{1 \leq i<j \leq 4} \Delta_{i, j} . b_{i} \wedge b_{j}$ with $\Delta_{i, j} \in k$.

1. Show that $\Delta_{i, j}=x_{i} y_{j}-x_{j} y_{i}$ for all i, j with $1 \leq i<j \leq 4$.
2. Show that the $\Delta_{i, j}$ satisfy the so-called Plücker relation

$$
\Delta_{1,2} \Delta_{3,4}-\Delta_{1,3} \Delta_{2,4}+\Delta_{1,4} \Delta_{2,3}=0
$$

3. Show, conversely, that an arbitrary element $\sum_{1 \leq i<j \leq 4} \Delta_{i, j} . b_{i} \wedge b_{j}$ of $\Lambda^{2} M$ is of the form $m \wedge n$ for some $m, n \in M$ if the $\Delta_{i, j}$ satisfy the Plücker relation.
Hint: Determine the $\Delta_{i, j}$ for $m=1 . b_{1}+x_{3} \cdot b_{3}+x_{4} \cdot b_{4}$ and $n=1 . b_{2}+y_{3} \cdot b_{3}+y_{4} \cdot b_{4}$. Use this to treat the case where $\Delta_{1,2}=1$. Reduce the general situation to this case.
