Choose from the following list 4 exercises that you have not done before, for which you hand in solutions.

Let G be a group with multiplication $m: G \times G \to G$, inversion $i: G \to G$ and neutral element e.

Exercise 1 (Isomorphisms, monomorphisms and epimorphisms).

Let $f: G \to H$ be a group homomorphism. Show that f is an isomorphism in Groups (in the sense of Definition 2.3.1) if and only if f is bijective. Show that f is a monomorphism if and only if f is injective. Show that f is an epimorphism if and only if f is surjective.

Exercise 2 (Subgroups).

Let *H* be a subset of *G*. Show that *H* is a subgroup of *G* if and only if $e \in H$, $m(H \times H) \subset H$ and $i(H) \subset H$. In other words, *H* is a subgroup if and only if it is a group with respect to the restrictions of *m* and *i* to *H*.

Exercise 3 (The center).

Show that the center of G

$$Z(G) = \{ a \in G \mid ab = ba \text{ for all } b \in G \}$$

is a subgroup of G. Show that Z(G) is commutative. Show that every subgroup of Z(G) is normal in G. Is every commutative subgroup of G normal?

Exercise 4 (The subgroup generated by a subset).

- 1. Let $\{H_i\}_{i \in I}$ be a family of subgroups of G. Show that the intersection $\bigcap_{i \in I} H_i$ is a subgroup of G.
- 2. Let $S \subset G$ be a subset. Show that

$$\bigcap_{H < G \text{ with } S \subset H} H = \{ a_1 a_2^{-1} \cdots a_{2n-1} a_{2n}^{-1} \mid n \ge 1 \text{ and } a_1, \dots, a_n \in S \cup \{e\} \}$$

and conclude that there is a unique smallest subgroup $\langle S \rangle$ of G that contains S.

Exercise 5 (Orders of elements in commutative groups).

Let G be a commutative group and $a, b \in G$. Show that $\operatorname{ord}(ab)$ divides $\operatorname{ord}(a) \cdot \operatorname{ord}(b)$. Is this also true if G is not commutative? Exercise 6 (Cyclic groups and the Klein four-group).

- 1. Classify all cyclic groups up to isomorphism. Which of them are commutative?
- 2. Show that a cyclic group of order n has a unique subgroup of order d for each divisor d of n.
- 3. Is the Klein four-group $V = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ cyclic? Is it commutative?

Exercise 7 (Dihedral groups).

Let D_n be the group of symmetries of a regular polygon with n sides. Show that $D_n = \langle r, s \rangle$ where r is a rotation around the center of the polygon by an angle of $2\pi/n$ and s is the reflection at a line passing through the center of the polygon and one of its vertices. What is the number of elements of D_n ? Show that $D_3 \simeq S_3$, and that for $n \ge 4$, the dihedral group D_n is not isomorphic to a symmetric group.

Exercise 8 (Symmetric groups).

The symmetric group S_n is the group of permutations of the numbers $1, \ldots, n$, together with composition as multiplication, i.e. $\sigma \cdot \tau = \sigma \circ \tau$. An element σ of S_n is called a cycle (of length l) if $\operatorname{ord}(\sigma) = l$ and if there is an $i \in \{1, \ldots, n\}$ such that $\sigma(j) = j$ if $j \notin \{i, \sigma(i), \ldots, \sigma^{l-1}(i)\}$; we write $\sigma = (i, \sigma(i), \ldots, \sigma^{l-1}(i))$ in this case.

- 1. Show that $(i, \ldots, \sigma^{l-1}(i)) = (j, \ldots, \sigma^{l-1}(j))$ if $j = \sigma^n(i)$ for some $n \ge 0$.
- 2. Two cycles $\sigma = (i, \ldots, \sigma^{l-1}(i))$ and $\tau = (j, \ldots, \tau^{k-1}(j))$ are called *disjoint* if the sets $\{i, \ldots, \sigma^{l-1}(i)\}$ and $\{j, \ldots, \tau^{k-1}(j)\}$ are disjoint. Show that σ and τ are disjoint if and only if $\sigma \tau = \tau \sigma$.
- 3. Show that every element of S_n can be written as a product of disjoint cycles.
- 4. A transposition is a cycle (i, j) of length 2. Show that every element of S_n can be written as a product of transpositions.

Exercise 9 (The sign).

Let σ be an element of S_n and $\sigma = \tau_n \circ \cdots \circ \tau_1$ and $\sigma = \tau'_m \circ \cdots \circ \tau'_1$ two representations of σ as a product of transpositions τ_1, \ldots, τ_n and τ'_1, \ldots, τ'_m .

- 1. Show that n m is even. Conclude that the map sign : $S_n \to \{\pm 1\}$ that sends σ to $(-1)^n$ is well-defined.
- 2. Show that sign is a group homomorphism.

Exercise 10 (Theorem of Cayley).

Let $G = \{a_1, \ldots, a_n\}$ be of finite order n. Define the map $f : G \to S_n$ that sends a_l to the permutation σ_l with $\sigma_l(i) = j$ such that $a_l a_i = a_j$. Show that f is an injective group homomorphism. Conclude that every finite group is isomorphic to a subgroup of a symmetric group.

Exercise 11 (The alternating group).

The alternating group A_n is defined as the kernel of sign : $S_n \to \{\pm 1\}$. A group G is called *simple* if $G \neq \{e\}$ and if the only normal subgroups of G are $\{e\}$ and G.

- 1. Show that a cyclic group G of order n is simple if and only if n is a prime number.
- 2. Show that A_3 is simple. Show that A_4 is not simple. What about A_1 and A_2 ?
- 3. Show that A_n is simple for $n \ge 5$.¹

Exercise 12 (Quaternion group).

The quaternion group Q consists of the elements $\{\pm 1, \pm i, \pm j, \pm k\}$, and the multiplication is determined by the following rules: 1 is the neutral element, $(-1)^2 = 1$ and

$$i^{2} = j^{2} = k^{2} = -1, \quad (-1)i = -i, \quad (-1)j = -j, \quad (-1)k = -k, \quad ij = k = -ji$$

- 1. Is Q commutative?
- 2. Describe all subgroups of Q.
- 3. Which subgroups are normal? What are the respective quotient groups?

Exercise 13.

Classify all groups with 6 elements and all groups with 8 elements up to isomorphism.

Exercise 14 (Transitivity of index). Let H be a subgroup of G and K a subgroup of H. Show that (G : K) = (G : H)(H : K).

Exercise 15 (Quotients by non-normal subgroups). Let H be subgroup of G. Show that the association $([a], [b]) \mapsto [ab]$ is not well-defined on cosets $[a], [b] \in G/H$ if H is not normal in G.

Exercise 16 (Alternative characterization of normal subgroups). A subgroup H of G is normal if and only if $gHg^{-1} \subset H$ for every $g \in G$.

Exercise 17 (Exercises on normal subgroups). Show the following statements.

- 1. Every subgroup of index 2 is normal.
- 2. Every subgroup of a commutative group is normal. Is there a non-commutative group G such that every subgroup H of G is normal?
- 3. The intersection of two normal subgroups is a normal subgroup. If both normal subgroups have finite index, then their intersection has also finite index.

¹This exercise is more difficult than others, but solutions can be found in the literature.

Exercise 18 (Universal property of the quotient).

Let N be a normal subgroup of G. Show that the quotient map $\pi: G \to G/N$ satisfies the following universal property: for every group homomorphism $f: G \to H$ with f(a) = e for $a \in N$ there exists a unique group homomorphism $\bar{f}: G/N \to H$ such that $f = \bar{f} \circ \pi$, i.e. the diagram

commutes.

Exercise 19 (Universal property of the product). Let $\{G_i\}_{i \in I}$ be a family of groups and $G = \prod G_i$ their product.

- 1. Show that the map $\pi_i : G \to G_i$ that sends $(g_i)_{i \in I}$ to g_i is a surjective group homomorphism for every $i \in I$. These maps are called the *canonical projections*.
- 2. Show that the product together with the canonical projections satisfies the following universal property: for every family of group homomorphisms $\{f_i : H \rightarrow G_i\}_{i \in I}$, there is a unique group homomorphism $f : H \rightarrow \prod G_i$ such that $f_j = \pi_j \circ f$ for every $j \in I$, i.e. the diagram

commutes for every $j \in I$.

Exercise 20 (Universal property of the direct sum).

Let $\{G_i\}_{i\in I}$ be a family of commutative groups and $G = \bigoplus G_i$ their direct sum.

- 1. Show that the map $\iota_i : G_i \to G$ that sends g to $(g_j)_{j \in I}$ with $g_i = g$ and $g_j = e_j$ for $j \neq i$ is an injective group homomorphism for every $i \in I$. These maps are called the *canonical injections*.
- 2. Show that the direct sum together with the canonical injections satisfies the following universal property: for every family of group homomorphisms $\{f_i : G_i \to H\}_{i \in I}$ of commutative groups, there is a unique group homomorphism $f : \bigoplus G_i \to H$ such that $f_j = f \circ \iota_j$ for every $j \in I$, i.e. the diagram

commutes for every $j \in I$.

3. Is the same true if H is a non-commutative group?

Exercise 21 (Some group actions).

Show that the following maps are group actions.

- 1. $S_n \times \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$, with $\sigma i = \sigma(i)$.
- 2. $\operatorname{GL}_n(\mathbb{R}) \times \mathbb{R}^n \to \mathbb{R}^n$, with $g.v = g \cdot v$ (usual matrix multiplication).
- 3. $\mathbb{R}^{\times} \times \mathbb{R}^n \to \mathbb{R}^n$, with $a.v = a \cdot v$ (scalar multiplication).
- 4. The permutation of the vertices of a regular n-gon by elements of the dihedral group D_n .

Exercise 22 (Center and centralizer).

Consider the action of G on itself by conjugation.

1. Show that

$$\left\{x \in G \,\middle|\, \mathcal{O}(x) = \{x\}\right\} = \left\{a \in G \,\middle|\, ab = ba \text{ for all } b \in G\right\}.$$

- 2. Show that $C_G(x) = \{a \in G \mid ax = xa\}.$
- 3. Show that

$$Z(G) = \bigcap_{x \in G} C_G(x).$$

Exercise 23 (Normalizer).

Let H be a subgroup of G. Show that its normalizer Norm_G(H) is the largest subgroup of G containing H such that H is a normal subgroup of Norm_G(H). Show further that the following properties are equivalent:

- 1. H is normal in G;
- 2. Norm_G(H) = G;
- 3. H is a fixed point for the action of G on the set of all subgroups of G by conjugation.

Exercise 24 (Short exact sequences).

A short exact sequence of groups is a sequence

.

$$\{e\} \xrightarrow{f_1} N \xrightarrow{f_2} G \xrightarrow{f_3} Q \xrightarrow{f_4} \{e\}$$

of groups and group homomorphism such that $im f_i = \ker f_{i+1}$ for i = 1, 2, 3.

- 1. Show that $im f_i = ker f_{i+1}$ for i = 1, 2, 3 holds if and only if f_2 is injective, if $\operatorname{im} f_2 = \ker f_3$ and if f_3 is surjective.
- 2. Show that N is isomorphic to $N' = im f_1$, that N' is a normal subgroup of G and that $G/N' \simeq Q$ in case of a short exact sequence.

Exercise 25.

Calculate all orbits and stabilizers for the action of D_4 on itself by conjugation.

Exercise 26 (Commutator subgroup).

The commutator of two elements $a, b \in G$ is $[a, b] = aba^{-1}b^{-1}$. The commutator subgroup of G is the subgroup [G, G] generated by the commutators [a, b] of all pairs of elements a and b of G.

- 1. Show that [a, b] = e if and only if ab = ba. Conclude that $[G, G] = \{e\}$ if and only if G is commutative.
- 2. Show that $c[a, b]c^{-1} = [cac^{-1}, cbc^{-1}]$ and conclude that [G, G] is a normal subgroup of G.
- 3. Show that the quotient group $G^{ab} = G/[G,G]$ is commutative.
- 4. Show that G^{ab} together with the projection $\pi : G \to G^{ab}$ satisfies the following universal property: for every group homomorphism $f : G \to H$ into a commutative group H, there exists a unique group homomorphism $f^{ab} : G^{ab} \to H$ such that $f = f^{ab} \circ \pi$:

Exercise 27.

Determine all *p*-Sylow subgroups of S_4 for $p \in \{2, 3\}$.

Exercise 28.

Let $\operatorname{ord}(G) = 6$ and n_p the number of *p*-Sylow subgroups of *G*. Find all possibilities for n_2 and n_3 , using the Sylow theorems. Find examples of groups with 6 elements that realize these possibilities.

Exercise 29.

Let $\operatorname{ord}(G) = pq$ for prime numbers p and q. Show that G is not simple.

Hint: If p = q, then use the class equation. If $p \neq q$, then use the Sylow theorems.