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Choose from the following list 4 exercises that you have not done before, for which you
hand in solutions.

Let G be a group with multiplication m : G×G→ G, inversion i : G→ G and neutral
element e.

Exercise 1 (Isomorphisms, monomorphisms and epimorphisms).
Let f : G→ H be a group homomorphism. Show that f is an isomorphism in Groups (in
the sense of Definition 2.3.1) if and only if f is bijective. Show that f is a monomorphism
if and only if f is injective. Show that f is an epimorphism if and only if f is surjective.

Exercise 2 (Subgroups).
Let H be a subset of G. Show that H is a subgroup of G if and only if e ∈ H,
m(H ×H) ⊂ H and i(H) ⊂ H. In other words, H is a subgroup if and only if it is a
group with respect to the restrictions of m and i to H.

Exercise 3 (The center).
Show that the center of G

Z(G) = { a ∈ G | ab = ba for all b ∈ G }

is a subgroup of G. Show that Z(G) is commutative. Show that every subgroup of
Z(G) is normal in G. Is every commutative subgroup of G normal?

Exercise 4 (The subgroup generated by a subset).

1. Let {Hi}i∈I be a family of subgroups of G. Show that the intersection
⋂
i∈I Hi is

a subgroup of G.

2. Let S ⊂ G be a subset. Show that⋂
H<G with S⊂H

H = { a1a
−1
2 · · · a2n−1a

−1
2n |n ≥ 1 and a1, . . . , an ∈ S ∪ {e} }

and conclude that there is a unique smallest subgroup 〈S〉 of G that contains S.

Exercise 5 (Orders of elements in commutative groups).
Let G be a commutative group and a, b ∈ G. Show that ord(ab) divides ord(a) · ord(b).
Is this also true if G is not commutative?



Exercise 6 (Cyclic groups and the Klein four-group).

1. Classify all cyclic groups up to isomorphism. Which of them are commutative?

2. Show that a cyclic group of order n has a unique subgroup of order d for each
divisor d of n.

3. Is the Klein four-group V = (Z/2Z)× (Z/2Z) cyclic? Is it commutative?

Exercise 7 (Dihedral groups).
Let Dn be the group of symmetries of a regular polygon with n sides. Show that
Dn = 〈r, s〉 where r is a rotation around the center of the polygon by an angle of 2π/n
and s is the reflection at a line passing through the center of the polygon and one of
its vertices. What is the number of elements of Dn? Show that D3 ' S3, and that for
n ≥ 4, the dihedral group Dn is not isomorphic to a symmetric group.

Exercise 8 (Symmetric groups).
The symmetric group Sn is the group of permutations of the numbers 1, . . . , n, together
with composition as multiplication, i.e. σ · τ = σ ◦ τ . An element σ of Sn is called a
cycle (of length l) if ord(σ) = l and if there is an i ∈ {1, . . . , n} such that σ(j) = j if
j /∈ {i, σ(i), . . . , σl−1(i)}; we write σ = (i, σ(i), . . . , σl−1(i)) in this case.

1. Show that (i, . . . , σl−1(i)) = (j, . . . , σl−1(j)) if j = σn(i) for some n ≥ 0.

2. Two cycles σ = (i, . . . , σl−1(i)) and τ = (j, . . . , τk−1(j)) are called disjoint if
the sets {i, . . . , σl−1(i)} and {j, . . . , τk−1(j)} are disjoint. Show that σ and τ are
disjoint if and only if στ = τσ.

3. Show that every element of Sn can be written as a product of disjoint cycles.

4. A transposition is a cycle (i, j) of length 2. Show that every element of Sn can be
written as a product of transpositions.

Exercise 9 (The sign).
Let σ be an element of Sn and σ = τn ◦ · · · ◦ τ1 and σ = τ ′m ◦ · · · ◦ τ ′1 two representations
of σ as a product of transpositions τ1, . . . , τn and τ ′1, . . . , τ

′
m.

1. Show that n−m is even. Conclude that the map sign : Sn → {±1} that sends σ
to (−1)n is well-defined.

2. Show that sign is a group homomorphism.

Exercise 10 (Theorem of Cayley).
Let G = {a1, . . . , an} be of finite order n. Define the map f : G → Sn that sends al
to the permutation σl with σl(i) = j such that alai = aj . Show that f is an injective
group homomorphism. Conclude that every finite group is isomorphic to a subgroup of
a symmetric group.



Exercise 11 (The alternating group).
The alternating group An is defined as the kernel of sign : Sn → {±1}. A group G is
called simple if G 6= {e} and if the only normal subgroups of G are {e} and G.

1. Show that a cyclic group G of order n is simple if and only if n is a prime number.

2. Show that A3 is simple. Show that A4 is not simple. What about A1 and A2?

3. Show that An is simple for n ≥ 5.1

Exercise 12 (Quaternion group).
The quaternion group Q consists of the elements {±1,±i,±j,±k}, and the multiplica-
tion is determined by the following rules: 1 is the neutral element, (−1)2 = 1 and

i2 = j2 = k2 = −1, (−1)i = −i, (−1)j = −j, (−1)k = −k, ij = k = −ji.

1. Is Q commutative?

2. Describe all subgroups of Q.

3. Which subgroups are normal? What are the respective quotient groups?

Exercise 13.
Classify all groups with 6 elements and all groups with 8 elements up to isomorphism.

Exercise 14 (Transitivity of index).
LetH be a subgroup ofG andK a subgroup ofH. Show that (G : K) = (G : H)(H : K).

Exercise 15 (Quotients by non-normal subgroups).
Let H be subgroup of G. Show that the association ([a], [b]) 7→ [ab] is not well-defined
on cosets [a], [b] ∈ G/H if H is not normal in G.

Exercise 16 (Alternative characterization of normal subgroups).
A subgroup H of G is normal if and only if gHg−1 ⊂ H for every g ∈ G.

Exercise 17 (Exercises on normal subgroups).
Show the following statements.

1. Every subgroup of index 2 is normal.

2. Every subgroup of a commutative group is normal. Is there a non-commutative
group G such that every subgroup H of G is normal?

3. The intersection of two normal subgroups is a normal subgroup. If both normal
subgroups have finite index, then their intersection has also finite index.

1This exercise is more difficult than others, but solutions can be found in the literature.



Exercise 18 (Universal property of the quotient).
Let N be a normal subgroup of G. Show that the quotient map π : G→ G/N satisfies
the following universal property: for every group homomorphism f : G → H with
f(a) = e for a ∈ N there exists a unique group homomorphism f̄ : G/N → H such that
f = f̄ ◦ π, i.e. the diagram

G H

G/N

f

π
�

f̄

commutes.

Exercise 19 (Universal property of the product).
Let {Gi}i∈I be a family of groups and G =

∏
Gi their product.

1. Show that the map πi : G → Gi that sends (gi)i∈I to gi is a surjective group
homomorphism for every i ∈ I. These maps are called the canonical projections.

2. Show that the product together with the canonical projections satisfies the fol-
lowing universal property: for every family of group homomorphisms {fi : H →
Gi}i∈I , there is a unique group homomorphism f : H →

∏
Gi such that fj = πj◦f

for every j ∈ I, i.e. the diagram

H
∏
Gi

Gj

f

fi
πj

�

commutes for every j ∈ I.

Exercise 20 (Universal property of the direct sum).
Let {Gi}i∈I be a family of commutative groups and G =

⊕
Gi their direct sum.

1. Show that the map ιi : Gi → G that sends g to (gj)j∈I with gi = g and gj = ej for
j 6= i is an injective group homomorphism for every i ∈ I. These maps are called
the canonical injections.

2. Show that the direct sum together with the canonical injections satisfies the
following universal property: for every family of group homomorphisms {fi :
Gi → H}i∈I of commutative groups, there is a unique group homomorphism
f :
⊕
Gi → H such that fj = f ◦ ιj for every j ∈ I, i.e. the diagram⊕

Gi H

Gj

f

�
fj

ιj

commutes for every j ∈ I.

3. Is the same true if H is a non-commutative group?



Exercise 21 (Some group actions).
Show that the following maps are group actions.

1. Sn × {1, . . . , n} → {1, . . . , n}, with σ.i = σ(i).

2. GLn(R)× Rn → Rn, with g.v = g · v (usual matrix multiplication).

3. R× × Rn → Rn, with a.v = a · v (scalar multiplication).

4. The permutation of the vertices of a regular n-gon by elements of the dihedral
group Dn.

Exercise 22 (Center and centralizer).
Consider the action of G on itself by conjugation.

1. Show that {
x ∈ G

∣∣O(x) = {x}
}

=
{
a ∈ G

∣∣ ab = ba for all b ∈ G
}
.

2. Show that CG(x) = {a ∈ G | ax = xa}.

3. Show that
Z(G) =

⋂
x∈G

CG(x).

Exercise 23 (Normalizer).
Let H be a subgroup of G. Show that its normalizer NormG(H) is the largest subgroup
of G containing H such that H is a normal subgroup of NormG(H). Show further that
the following properties are equivalent:

1. H is normal in G;

2. NormG(H) = G;

3. H is a fixed point for the action of G on the set of all subgroups of G by conju-
gation.

Exercise 24 (Short exact sequences).
A short exact sequence of groups is a sequence

{e} f1−→ N
f2−→ G

f3−→ Q
f4−→ {e}

of groups and group homomorphism such that imfi = ker fi+1 for i = 1, 2, 3.

1. Show that imfi = ker fi+1 for i = 1, 2, 3 holds if and only if f2 is injective, if
imf2 = ker f3 and if f3 is surjective.

2. Show that N is isomorphic to N ′ = imf1, that N ′ is a normal subgroup of G and
that G/N ′ ' Q in case of a short exact sequence.



Exercise 25.
Calculate all orbits and stabilizers for the action of D4 on itself by conjugation.

Exercise 26 (Commutator subgroup).
The commutator of two elements a, b ∈ G is [a, b] = aba−1b−1. The commutator sub-
group of G is the subgroup [G,G] generated by the commutators [a, b] of all pairs of
elements a and b of G.

1. Show that [a, b] = e if and only if ab = ba. Conclude that [G,G] = {e} if and only
if G is commutative.

2. Show that c[a, b]c−1 = [cac−1, cbc−1] and conclude that [G,G] is a normal subgroup
of G.

3. Show that the quotient group Gab = G/[G,G] is commutative.

4. Show that Gab together with the projection π : G → Gab satisfies the following
universal property: for every group homomorphism f : G→ H into a commutative
group H, there exists a unique group homomorphism fab : Gab → H such that
f = fab ◦ π:

G H

Gab

f

π
�

fab

Exercise 27.
Determine all p-Sylow subgroups of S4 for p ∈ {2, 3}.

Exercise 28.
Let ord(G) = 6 and np the number of p-Sylow subgroups of G. Find all possibilities for
n2 and n3, using the Sylow theorems. Find examples of groups with 6 elements that
realize these possibilities.

Exercise 29.
Let ord(G) = pq for prime numbers p and q. Show that G is not simple.

Hint: If p = q, then use the class equation. If p 6= q, then use the Sylow theorems.


