Exercise 1.

Let M be a free A-module of rank $r>0$ with basis $\left\{v_{1}, \ldots, v_{r}\right\}$. Show that the map

$$
\begin{array}{ccc}
A\left[T_{1}, \ldots, T_{r}\right] & \longrightarrow & \operatorname{Sym}(M) \\
T_{i} & \longmapsto & v_{i}
\end{array}
$$

is a graded isomorphism of graded A-algebras. Show that $T^{i}(M)$ is free of rank r^{i} and that $\operatorname{Sym}^{i}(M)$ is free of $\operatorname{rank}\binom{r+i-1}{i}$.

Exercise 2.

Let A be a \mathbb{Q}-algebra and M a finitely generated A-module. The exponential map $\exp : \Lambda(M) \rightarrow \Lambda(M)$ is defined by the formula

$$
\exp (x)=1+\sum_{k \geq 1} \frac{1}{k!} \underbrace{(x \wedge \ldots \wedge x)}_{k-\text { times }} .
$$

Show that $\exp (x)$ is equal to a finite sum, and therefore well-defined as an element of $\Lambda(M)$. Calculate the expressions $\exp (m)$ and $\exp (m \wedge n+o \wedge p)$ where $m, n, o, p \in M$. Does the formula $\exp (x+y)=\exp (x) \wedge \exp (y)$ hold for any $x, y \in \Lambda(M)$?

Exercise 3.

Let M be an A-module. Consider the ideals

$$
I=\langle m \otimes m \mid m \in M\rangle \quad \text { and } \quad J=\langle m \otimes n+n \otimes m \mid m, n \in M\rangle
$$

of $T(M)$. Show that $I=J$ if 2 is invertible in A. Give an example for A and M where $I \neq J$.

Exercise 4.

Let $l \leq r$ be positive integers and M a free A-module with basis $\left\{v_{1}, \ldots, v_{r}\right\}$. For $i=1, \ldots, r$ and $j=1, \ldots, l$, let $a_{i, j} \in A$ and define the elements

$$
m_{j}=\sum_{i=1}^{r} a_{i, j} v_{i}
$$

of M.

1. Show that there is a unique element $\delta_{\sigma} \in A$ for every strictly order preserving maps $\sigma:\{1, \ldots, l\} \rightarrow\{1, \ldots, n\}$ such that

$$
m_{1} \wedge \ldots \wedge m_{l}=\sum \delta_{\sigma \cdot}\left(v_{\sigma(1)} \wedge \ldots \wedge v_{\sigma(l)}\right)
$$

as elements of $\Lambda^{l}(M)$ where σ ranges through all stictly order preserving maps $\sigma:\{1, \ldots, l\} \rightarrow\{1, \ldots, n\}$. Show that

$$
\delta_{\sigma}=\operatorname{det}\left(a_{i, j}\right)_{\substack{i \in \operatorname{im} \sigma \\ j=1, \ldots, l}}
$$

2. Let $f: M \rightarrow M$ be an endomorphism and $\Lambda^{r}(f): \Lambda^{r}(M) \rightarrow \Lambda^{r}(M)$ the induced linear map. Let $a_{i, j} \in A$ such that $f\left(v_{i}\right)=\sum_{j=1}^{r} a_{i, j} \cdot v_{j}$ for $i=1, \ldots, r$. Conclude that

$$
\delta=\operatorname{det}\left(a_{i, j}\right)_{i, j=1, \ldots, r}
$$

is the unique element of A such that

$$
\left(\Lambda^{r}(f)\right)\left(v_{1} \wedge \ldots \wedge v_{r}\right)=\delta \cdot\left(v_{1} \wedge \ldots \wedge v_{r}\right)
$$

Exercise 5 (Bonus).
This is a continuation of Exercise 4. However, we assume that $A=k$ is field for this exercise. Consequently, M is a k-vector space.

1. Show that $m_{1} \wedge \ldots \wedge m_{l} \neq 0$ if and only if $\left\{m_{1}, \ldots, m_{l}\right\}$ is linearly independent.
2. Assume that $\left\{m_{1}, \ldots, m_{l}\right\}$ and $\left\{m_{1}^{\prime}, \ldots, m_{l}^{\prime}\right\}$ are linearly independent subsets of M. Show that there is a $\lambda \in k^{\times}$such that

$$
m_{1}^{\prime} \wedge \ldots \wedge m_{l}^{\prime}=\lambda \cdot m_{1} \wedge \ldots \wedge m_{l}
$$

if and only if $\left\{m_{1}, \ldots, m_{l}\right\}$ and $\left\{m_{1}^{\prime}, \ldots, m_{l}^{\prime}\right\}$ span the same l-dimensional subvector space N of M.
Hint: If they span the same subvector space N, then one can find a $l \times l$-base change matrix. What is the effect of this matrix on the coefficients δ_{σ} from Exercise 4 ?
3. Define $\mathbb{P}\left(\Lambda^{l}(M)\right)=\left(\Lambda^{l}(M)-\{0\}\right) / k^{\times}$as the set of equivalent classes of nonzero elements of $\Lambda^{l}(M)$ modulo scalar multiplication by nonzero $\lambda \in k^{\times}$. Conclude from the previous part of the exercise that there is a well-defined inclusion

$$
\{l \text {-dimensional subvector spaces of } M\} \quad \longrightarrow \mathbb{P}\left(\Lambda^{l}(M)\right)
$$

Remark: The set $\mathbb{P}\left(\Lambda^{l}(M)\right)$ is called the projective space of $\Lambda^{l}(M)$, the above inclusion is called the Plücker embedding and its image is called the Grassmann variety $\operatorname{Gr}(l, n)$ of l-subspaces in n-space.

