Exercise 1.

Let A be a ring and $f: M \to N$ a homomorphism of A-modules. Show that

- 1. f is a monomorphism if and only if it is injective;
- 2. f is an epimorphism if and only if it is surjective;
- 3. f is an isomorphism (in the sense of category theory, cf. Chapter 2) if and only if it is bijective.

Exercise 2. Show that the following properties for an *A*-module *P* are equivalent.

- 1. The functor $\operatorname{Hom}(P, -)$ is exact.
- 2. There is an A-module Q such that $P \oplus Q$ is free.
- 3. Every short exact sequence of A-modules of the form $0 \to N \to M \to P \to 0$ splits.
- 4. For every epimorphism $p: M \to Q$ of A-modules and every homomorphism $f: P \to Q$, there is a homomorphism $g: P \to M$ such that $f = p \circ g$.

An A-module P with these properties is called *projective*. Conclude that every free A-module is projective. Show that $\mathbb{Z}/2\mathbb{Z}$ is a projective $\mathbb{Z}/6\mathbb{Z}$ -module that is not free.

Remark: An A-module I is *injective* if Hom(-, I) is exact. It can be shown that there are analogous characterizations as in (3) and (4) for injective modules. However, there is no direct analogue to (2). For $A = \mathbb{Z}$, one can show that a \mathbb{Z} -module I is injective if and only if it is *divisible*, i.e. for every $m \in I$ and every integer l > 0 there exists an $n \in I$ such that l.n = m.

Exercise 3.

Let A be a ring and P an A-module.

1. Let M and N be A-modules and $f: N \to \operatorname{Hom}_A(P, N)$ a homomorphism. Show that $\Psi_{M,N}(f): p \otimes m \mapsto (f(m))(p)$ defines an isomorphism

$$\Psi_{M,N}$$
: Hom_A($P \otimes_A M, N$) \longrightarrow Hom_A($M, \operatorname{Hom}_A(P, N)$)

of A-modules.

2. Let $\alpha: M \to M'$ and $\beta: N \to N'$ be homomorphisms. Show that the diagram

commutes where $\alpha_P : P \otimes_A M \to P \otimes_A M'$ and $\beta_* : \operatorname{Hom}_A(P, N) \to \operatorname{Hom}_A(P, N')$ are the homomorphisms that are induced by α and β , respectively.

Exercise 4.

Let A be a ring and M_1 and M_2 A-modules.

1. Show that the canonical injections $\iota_k : M_k \to M_1 \oplus M_2$ and the canonical projections $\pi_k : M_1 \oplus M_2 \to M_k$ (for k = 1, 2) satisfy the relations

$$\iota_1 \circ \pi_1 + \iota_2 \circ \pi_2 = \operatorname{id}_{M_1 \oplus M_2} \quad \text{and} \quad \pi_k \circ \iota_l = \begin{cases} \operatorname{id}_{M_k} & \text{if } k = l, \\ \mathbf{0} & \text{if } k \neq l \end{cases}$$

for all k, l = 1, 2.

2. Let P be an A-module and $i_k : M_k \to P$ and $p_k : P \to M_k$ homomorphisms for k = 1, 2 that satisfy the relations

$$i_1 \circ p_1 + i_2 \circ p_2 = \operatorname{id}_P$$
 and $p_k \circ i_l = \begin{cases} \operatorname{id}_{M_k} & \text{if } k = l, \\ \mathbf{0} & \text{if } k \neq l \end{cases}$

for k, l = 1, 2. Show that the homomorphism $M_1 \oplus M_2 \to P$ that is induced by $\{i_k : M_k \to P\}_{k=1,2}$ is an isomorphism.

- 3. Let B be a ring and $\mathcal{F} : \operatorname{Mod}_A \to \operatorname{Mod}_B$ an additive covariant functor. Show that the homomorphism $\mathcal{F}(M_1) \oplus \mathcal{F}(M_2) \to \mathcal{F}(M_1 \oplus M_2)$ that is induced by $\{\mathcal{F}(\iota_k) : \mathcal{F}(M_i) \to \mathcal{F}(M_1 \oplus M_2)\}_{k=1,2}$ is an isomorphism.
- 4. Let $\mathcal{F} : \operatorname{Mod}_A \to \operatorname{Mod}_B$ be as before and $0 \to N \to M \to Q \to 0$ a split short exact sequence. Show that $0 \to \mathcal{F}(N) \to \mathcal{F}(M) \to \mathcal{F}(Q) \to 0$ is a split short exact sequence.

Exercise 5 (Bonus). Let A and B be rings.

1. Let M and N be A-modules and $f,g:M\to N$ homomorphisms. Show that the homomorphism

is equal to $f + g : M \to N$.

2. Let $\mathcal{F} : \operatorname{Mod}_A \to \operatorname{Mod}_B$ be a covariant functor such that for all A-modules M_1 and M_2 , the homomorphism $\mathcal{F}(M_1) \oplus \mathcal{F}(M_2) \to \mathcal{F}(M_1 \oplus M_2)$ that is induced by $\{\mathcal{F}(\iota_k) : \mathcal{F}(M_i) \to \mathcal{F}(M_1 \oplus M_2)\}_{k=1,2}$ is an isomorphism where $\iota_k : M_k \to M_1 \oplus M_2$ are the canonical inclusions. Show that \mathcal{F} is additive.