Exercise 1.

Determine all simple characters of A_4 , which can be done as follows.

- 1. Show that A_4 has 4 conjugacy classes and determine representatives for each class.
- 2. Show that $A_4^{\rm ab}$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$ and conclude that A_4 has precisely 3 one-dimensional characters χ_1 , χ_2 and χ_3 . Determine these characters.
- 3. Show that A_4 has precisely one more simple character χ_4 , which is of dimension 3. Determine χ_4 . Can you find a representation with character χ_4 ?

Exercise 2.

Determine all simple characters of the dihedral group D_5 with 10 elements, which can be done as follows.

- 1. Show that D_5 has 4 conjugacy classes and determine representatives for each class.
- 2. Show that D_5^{ab} is isomorphic to $\mathbb{Z}/2\mathbb{Z}$ and conclude that D_5 has precisely 2 one-dimensional characters χ_1 and χ_2 . Determine these characters.
- 3. Show that the action of D_5 on the regular pentagon defines a 2-dimensional representation and calculate its character χ_3 .
- 4. Show that $\chi_4 = \chi_3^*$ is the forth character of D_5 .

Exercise 3.

Let G be a group acting on a set X and \mathbb{C}^X the corresponding permutation representation. Show that the contragredient representation of \mathbb{C}^X is isomorphic to \mathbb{C}^X .

Exercise 4.

Let U, V and W be representations of G over a field K. Find an isomorphism

$$\operatorname{Hom}_K(U \otimes_K V, W) \longrightarrow \operatorname{Hom}_K(U, \operatorname{Hom}_K(V, W))$$

of G-representations. Conclude that $\operatorname{Hom}_K(U,V) \simeq U^* \otimes_K V$ as G-representations.

Bonus: Show that $-\otimes_K V$ and $\operatorname{Hom}_K(V,-)$ are naturally functors from $\operatorname{Rep}_K(G)$ to $\operatorname{Rep}_K(G)$, and that $-\otimes_K V$ is left-adjoint to $\operatorname{Hom}_K(V,-)$.

Exercise 5 (Bonus).

Let G be a finite group. Let X be the set of isomorphism classes [V] of complex representations V of G.

1. Show that $([V_1], [W_1]) \sim ([V_2], [W_2])$ if and only if $V_1 \oplus W_2 \simeq V_2 \oplus W_1$ defines an equivalence relation \sim on $X \times X$. Define the (0-th) K-group of G as the quotient set

$$K_0(G) = X \times X/\sim$$
.

We write V-W for the equivalence class of ([V],[W]) in $K_0(G)$ and call V-W a virtual representation of G. We write V for $V-\{0\}$ where $\{0\}$ is the zero-dimensional representation.

2. Show that the addition

$$(V_1 - W_1) + (V_2 - W_2) = V_1 \oplus V_2 - W_1 \oplus W_2$$

and the multiplication

$$(V_1 - W_1) \cdot (V_2 - W_2) = (V_1 \otimes V_2) \oplus (W_1 \otimes W_2) - (V_1 \otimes W_2) \oplus (V_2 \otimes W_1)$$

turn $K_0(G)$ into a ring whose zero is $\{0\}$ and whose one is the trivial one-dimensional representation \mathbb{C} .

- 3. Show that $K_0(G)$ is freely generated over \mathbb{Z} by the classes $[V_1], \ldots, [V_s]$ of the irreducible representations of G, i.e. $K_0(G) \simeq \mathbb{Z}[T_1, \ldots, T_s]$.
- 4. Show that the association $V \mapsto \chi_V$ defines an injective ring homomorphism $K_0(G) \to \{C(G) \to \mathbb{C}\}.$