Exercise 1.

Let G be a finite group of order n and K a field whose characteristic does not divide n. Show that

$$\pi(v) \ = \ \frac{1}{n} \cdot \sum_{g \in G} g.v$$

defines a G-invariant projection $\pi: V \to V^G$.

Exercise 2.

Show that the action of S_4 on the vertices of the regular tetrahedron defines an irreducible 3-dimensional real representation V_3 of S_4 . Show that the permutation representation of S_4 on \mathbb{R}^4 , by permuting $\{1,2,3,4\}$, is isomorphic to the direct sum of V_3 with the trivial 1-dimensional representation.

Exercise 3.

Show that $K[G_1 \times G_2]$ and $K[G_1] \otimes_K K[G_2]$ are isomorphic rings for finite groups G_1 and G_2 . Formulate and prove a universal property for K[G].

Exercise 4.

Let K be a field that contains a primitive n-th root of unity ζ_n .

1. Let G be a cyclic group of order n with generator g. Show that for every $k = 1, \ldots, n$, the map

$$\pi_k: K[G] \longrightarrow K$$

$$\sum c_i g^i \longmapsto \sum c_i \zeta_n^{ki}$$

is a ring homomorphism.

2. Show that $\pi = (\pi_1, \dots, \pi_n) : K[G] \to K^n$ is a ring isomorphism.

Hint: Note that the restrictions $\chi_k : G \to K$ of π_k to G are characters in the sense of the first part of the course, which are linearly independent by Theorem 4.4.3. Why does this imply that the kernel of π is trivial?

3. Conclude that $K[G] \simeq K^n$ for every finite abelian group G of order n if $\zeta_n \in K$.

Exercise 5.

Recall the definitions of monomorphisms, epimorphisms and isomorphisms in a category. Let $f: V \to W$ be a morphism in $\operatorname{Rep}_K(G)$, i.e. a G-equivariant homomorphism. Show that

- 1. f is a monomorphism if and only if f is injective;
- 2. f is an epimorphism if and only if f is surjective;
- 3. f is an isomorphism if and only if f is bijective.

Show that every monomorphism in $\operatorname{Rep}_K(G)$ is a kernel and that every epimorphism in $\operatorname{Rep}_K(G)$ is a cokernel.