Exercise 1.

Show that there is an n_i for i = 1, 2, 3 such that the following fields E_i are contained in $\mathbb{Q}(\zeta_{n_i})$. What are the smallest values for n_i ?

- 1. $E_1 = \mathbb{Q}(\sqrt{2});$
- 2. $E_2 = \mathbb{Q}(\sqrt{3});$
- 3. $E_3 = \mathbb{Q}(\sqrt{-3});$

Hint: Try to realize $\sqrt{2}$ and $\sqrt{3}$ as the side length of certain rectangular triangles. Which angles do occur?

Exercise 2.

Let ζ_{12} be a primitive 12-th root of unity. What is $\operatorname{Gal}(\mathbb{Q}(\zeta_{12}/\mathbb{Q}))$? Find primitive elements for all subfields E of $\mathbb{Q}(\zeta_{12})$.

Exercise 3. Let *L* be the splitting field of $T^3 - 2$ over \mathbb{Q} . Show that $\sqrt[3]{2}$, $\sqrt{-3}$ and ζ_3 are elements of *L*. Calculate $N_{L/\mathbb{Q}}(a)$ and $\operatorname{Tr}_{L/\mathbb{Q}}(a)$ for $a = \sqrt[3]{2}$, $a = \sqrt{-3}$ and $a = \zeta_3$. Calculate $N_{\mathbb{Q}}(\zeta_3)/\mathbb{Q}(\zeta_3)$ and $\operatorname{Tr}_{\mathbb{Q}}(\zeta_3)/\mathbb{Q}(\zeta_3)$.

Exercise 4.

Let L be the splitting field of $f = T^4 - 3$ over \mathbb{Q} . What is the Galois group of L/\mathbb{Q} ? Make a diagram of all subgroups of $\operatorname{Gal}(L/K)$ that illustrates which subgroups are contained in others. Which of the subextensions of L/\mathbb{Q} are elementary radical? Is L/\mathbb{Q} radical?

Hint: Find the four complex roots a_1, \ldots, a_4 of f. Which permutations of a_1, \ldots, a_4 extend to field automorphisms of L?

***Exercise 5** (Bonus). 1

Let L/K be a Galois extension and let

be the K-linear map associated with an element $a \in L$. Show that the trace of M_a equals $\operatorname{Tr}_{L/K}(a)$ and that the determinant of M_a equals $\operatorname{N}_{L/K}(a)$.

Hint: Use Exercise 1 from List 2.

*Exercise 6 (Bonus).

Find all composition series and their factors for the dihedral group

$$D_6 = \langle r, s | r^6 = s^2 = e, srs = r^{-1} \rangle.$$

*Exercise 7 (not to hand in).

Let p be a prime number and $n \geq 1$ and $\zeta \in \mathbb{F}_{p^n}$ a generator of $\mathbb{F}_{p^n}^{\times}$. Exhibit an embedding i: $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \to (\mathbb{Z}/(p^n-1)\mathbb{Z})^{\times}$ and conclude that n divides $\varphi(p^n-1)$. Can you find a proof for $n|\varphi(p^n-1)$ that does not use Galois theory?

¹It is advised to work on the bonus exercises and to hand in solution. The resulting points count as a bonus.