Exercises for Algebra II

List 5
To hand in at 24.9.2018 in the exercise class

Exercise 1.

Show that there is an n_{i} for $i=1,2,3$ such that the following fields E_{i} are contained in $\mathbb{Q}\left(\zeta_{n_{i}}\right)$. What are the smallest values for n_{i} ?

1. $E_{1}=\mathbb{Q}(\sqrt{2})$;
2. $E_{2}=\mathbb{Q}(\sqrt{3})$;
3. $E_{3}=\mathbb{Q}(\sqrt{-3})$;

Hint: Try to realize $\sqrt{2}$ and $\sqrt{3}$ as the side length of certain rectangular triangles. Which angles do occur?

Exercise 2.

Let ζ_{12} be a primitive 12 -th root of unity. What is $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{12} / \mathbb{Q}\right)\right)$? Find primitive elements for all subfields E of $\mathbb{Q}\left(\zeta_{12}\right)$.

Exercise 3. Let L be the splitting field of $T^{3}-2$ over \mathbb{Q}. Show that $\sqrt[3]{2}, \sqrt{-3}$ and ζ_{3} are elements of L. Calculate $\mathrm{N}_{L / \mathbb{Q}}(a)$ and $\operatorname{Tr}_{L / \mathbb{Q}}(a)$ for $a=\sqrt[3]{2}, a=\sqrt{-3}$ and $a=\zeta_{3}$. Calculate $\mathrm{N}_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}\right)$ and $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}\right)$.

Exercise 4.

Let L be the splitting field of $f=T^{4}-3$ over \mathbb{Q}. What is the Galois group of L / \mathbb{Q} ? Make a diagram of all subgroups of $\operatorname{Gal}(L / K)$ that illustrates which subgroups are contained in others. Which of the subextensions of L / \mathbb{Q} are elementary radical? Is L / \mathbb{Q} radical?
Hint: Find the four complex roots a_{1}, \ldots, a_{4} of f. Which permutations of a_{1}, \ldots, a_{4} extend to field automorphisms of L ?
*Exercise 5 (Bonus). ${ }^{1}$
Let L / K be a Galois extension and let

$$
\begin{array}{cccc}
M_{a}: & L & \longrightarrow & L \\
& b & \longmapsto a \cdot b
\end{array}
$$

be the K-linear map associated with an element $a \in L$. Show that the trace of M_{a} equals $\operatorname{Tr}_{L / K}(a)$ and that the determinant of M_{a} equals $\mathrm{N}_{L / K}(a)$.
Hint: Use Exercise 1 from List 2.
*Exercise 6 (Bonus).
Find all composition series and their factors for the dihedral group

$$
D_{6}=\left\langle r, s \mid r^{6}=s^{2}=e, s r s=r^{-1}\right\rangle
$$

*Exercise 7 (not to hand in).
Let p be a prime number and $n \geq 1$ and $\zeta \in \mathbb{F}_{p^{n}}$ a generator of $\mathbb{F}_{p^{n}}^{\times}$. Exhibit an embedding $i: \operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right) \rightarrow\left(\mathbb{Z} /\left(p^{n}-1\right) \mathbb{Z}\right)^{\times}$and conclude that n divides $\varphi\left(p^{n}-1\right)$. Can you find a proof for $n \mid \varphi\left(p^{n}-1\right)$ that does not use Galois theory?

[^0]
[^0]: ${ }^{1}$ It is advised to work on the bonus exercises and to hand in solution. The resulting points count as a bonus.

