Exercise 1.

Let L/K be a field extension and $a \in L$ algebraic over K. Let $f(T) \in K[T]$ be the minimal polynomial of a over K. Show that the minimal polynomial of the K-linear map

$$\begin{array}{cccc} M_a: & L & \longrightarrow & L \\ & b & \longmapsto & a \cdot b \end{array}$$

is equal to f.

Exercise 2.

Let L/K be a finite field extension. Then there are elements $a_1, \ldots, a_n \in L$ such that $L = K(a_1, \ldots, a_n)$.

Exercise 3.

Let L/K be a field extension and $a_1, \ldots, a_n \in L$. Show that $K(a_1, \ldots, a_n)/K$ is algebraic if and only if a_1, \ldots, a_n are algebraic over K.

Exercise 4.

Consider the following elements $\sqrt[3]{2}$ and ζ_3 as elements of an algebraic closure of \mathbb{Q} .

- 1. Show that $\sqrt[3]{2}$ is algebraic over $\mathbb Q$ and find its minimal polynomial. What is the degree $[\mathbb Q(\sqrt[3]{2}):\mathbb Q]$?
- 2. Let $\zeta_3 = e^{2\pi i/3}$ be a primitive third root of unity, i.e. an element $\neq 1$ that satisfies $\zeta_3^3 = 1$. Show that ζ_3 is algebraic over $\mathbb Q$ and find its minimal polynomial. What is the degree $[\mathbb Q(\zeta_3):\mathbb Q]$?
- 3. What is the degree of $\mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ over \mathbb{Q} ?