Exercise 1.

Show that an element $a \in \overline{\mathbb{Q}}$ is an algebraic integer if and only if the the subring $\mathbb{Z}[a]$ of $\overline{\mathbb{Q}}$ is finitely generated as a \mathbb{Z}-module. Show that in this case, $\mathbb{Z}[a]$ is a free \mathbb{Z}-module.

Exercise 2.

Describe and prove the universal property for $\operatorname{Ind}_{H}^{G}$.

Exercise 3.

Calculate for the following finite groups $H<G$ and for every simple character χ of H the decomposition of $\operatorname{Ind}_{H}^{G} \chi$ into simple characters of G, using the character tables of both H and G.

1. $H=A_{3}$ and $G=S_{3}$.
2. $H=V$ (Klein 4-group) and $G=S_{4}$.
3. $H=A_{4}$ and $G=S_{4}$.

Hint: Use Frobenius reciprocity to facilitate the calculations.
Remark: Note that the multiplicities occuring in these decompositions can be organized in a table (the induction-restriction table for H and G) as follows:

	ψ_{1}	\cdots	ψ_{r}
χ_{1}	$\left\langle\operatorname{Ind} \chi_{1}, \psi_{1}\right\rangle_{G}$	\cdots	$\left\langle\operatorname{Ind} \chi_{1}, \psi_{r}\right\rangle_{G}$
\vdots	\vdots	\ddots	\vdots
χ_{s}	$\left\langle\text { Ind } \chi_{s}, \psi_{1}\right\rangle_{G}$	\cdots	$\left\langle\operatorname{Ind} \chi_{s}, \psi_{r}\right\rangle_{G}$

Exercise 4.

Let G be a finite group, $g \in c$ and $C_{G}(g)=\{h \in G \mid g h=h g\}$ the centralizer of g in G. Let c be the conjugacy class of g. Show that $\# c=\frac{\# G}{\# C_{G}(g)}$ and conclude that, in particular, $\# c$ is a divisor of $\# G$.

Exercise 5.

Let G be a non-abelian group of order 55 .

1. Show that G is solvable. More precisely, show that G has a normal subgroup N of order 11. Conclude that $G^{\text {ab }}=G / N$.
2. Show that G has precisely 7 simple characters and determine their dimensions.
3. Show that G has four conjugacy classes with 11 elements, two conjugacy classes with 5 elements and one conjugacy class with 1 element.
4. Determine the character table of G.

Exercise 6.

Let $G=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) \in \operatorname{GL}\left(\mathbb{F}_{7}\right) \right\rvert\, a=c^{2}\right.$ for some $\left.c \in \mathbb{F}_{7}^{\times}\right\}$.

1. Show that G is a subgroup of $\mathrm{GL}\left(\mathbb{F}_{7}\right)$ of order 21 .
2. Show that $N=\left\{\left(\begin{array}{lll}1 & b \\ 0 & 1\end{array}\right)\right\}$ is a normal subgroup of G and that $G^{\text {ab }}=G / N$.
3. Show that G has precisely 5 simple characters, three of dimension 1 and two of dimension 3.
4. Determine the conjugacy classes c_{1}, \ldots, c_{5} of G and their cardinalities.
5. Determine the character table of G.
6. Let $G^{\prime}=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right) \in \mathrm{GL}\left(\mathbb{F}_{7}\right) \right\rvert\, a \in \mathbb{F}_{7}^{\times}\right\}$. Determine the conjugacy classes of G^{\prime} and exhibit a set S of representatives for these conjugacy classes.
7. Use Theorem 3.3.1 of the lecture to compute $\operatorname{Ind}_{G}^{G^{\prime}} \chi\left(g^{\prime}\right)$ for every simple character χ of G and every $g^{\prime} \in S$.
8. Use Mackey's criterion to verify for which simple characters χ of G the induced character $\operatorname{Ind}_{G}^{G^{\prime}} \chi$ is simple.

Exercise 7.

Determine the character table for the dihedral groups D_{5} and D_{6}.

Exercise 8.

Choose your five favourite character tables from https://people.maths.bris.ac.uk/ \sim matyd/GroupNames/characters.html and verify that they are correct.

