Exercise 1.

Show that an element $a \in \overline{\mathbb{Q}}$ is an algebraic integer if and only if the subring $\mathbb{Z}[a]$ of $\overline{\mathbb{Q}}$ is finitely generated as a \mathbb{Z} -module. Show that in this case, $\mathbb{Z}[a]$ is a free \mathbb{Z} -module.

Exercise 2.

Describe and prove the universal property for $\operatorname{Ind}_{H}^{G}$.

Exercise 3.

Calculate for the following finite groups H < G and for every simple character χ of H the decomposition of $\operatorname{Ind}_{H}^{G} \chi$ into simple characters of G, using the character tables of both H and G.

- 1. $H = A_3$ and $G = S_3$.
- 2. H = V (Klein 4-group) and $G = S_4$.
- 3. $H = A_4$ and $G = S_4$.

Hint: Use Frobenius reciprocity to facilitate the calculations.

Remark: Note that the multiplicities occuring in these decompositions can be organized in a table (the *induction-restriction table for H and G*) as follows:

	ψ_1		ψ_r
χ_1	$\langle \operatorname{Ind} \chi_1, \psi_1 \rangle_G$		$\langle \operatorname{Ind} \chi_1, \psi_r \rangle_G$
:	•	·	•
χ_s	$\langle \operatorname{Ind} \chi_s, \psi_1 \rangle_G$		$\langle \operatorname{Ind} \chi_s, \psi_r \rangle_G$

Exercise 4.

Let G be a finite group, $g \in c$ and $C_G(g) = \{h \in G | gh = hg\}$ the centralizer of g in G. Let c be the conjugacy class of g. Show that $\#c = \frac{\#G}{\#C_G(g)}$ and conclude that, in particular, #c is a divisor of #G.

Exercise 5.

Let G be a non-abelian group of order 55.

- 1. Show that G is solvable. More precisely, show that G has a normal subgroup N of order 11. Conclude that $G^{ab} = G/N$.
- 2. Show that G has precisely 7 simple characters and determine their dimensions.
- 3. Show that G has four conjugacy classes with 11 elements, two conjugacy classes with 5 elements and one conjugacy class with 1 element.
- 4. Determine the character table of G.

Exercise 6.

Let $G = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}(\mathbb{F}_7) | a = c^2 \text{ for some } c \in \mathbb{F}_7^{\times} \}.$

- 1. Show that G is a subgroup of $GL(\mathbb{F}_7)$ of order 21.
- 2. Show that $N = \{\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}\}$ is a normal subgroup of G and that $G^{ab} = G/N$.
- 3. Show that G has precisely 5 simple characters, three of dimension 1 and two of dimension 3.
- 4. Determine the conjugacy classes c_1, \ldots, c_5 of G and their cardinalities.
- 5. Determine the character table of G.
- 6. Let $G' = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}(\mathbb{F}_7) \mid a \in \mathbb{F}_7^{\times} \}$. Determine the conjugacy classes of G' and exhibit a set S of representatives for these conjugacy classes.
- 7. Use Theorem 3.3.1 of the lecture to compute $\operatorname{Ind}_{G}^{G'}\chi(g')$ for every simple character χ of G and every $g' \in S$.
- 8. Use Mackey's criterion to verify for which simple characters χ of G the induced character $\operatorname{Ind}_{G}^{G'} \chi$ is simple.

Exercise 7.

Determine the character table for the dihedral groups D_5 and D_6 .

Exercise 8.

Choose your five favourite character tables from https://people.maths.bris.ac.uk/ ~matyd/GroupNames/characters.html and verify that they are correct.