Exercise 1.

Consider the natural action of S_4 on $\{1, 2, 3, 4\}$ and define H as the stabilizer of 4. Show that $H \simeq S_3$. Determine the decompositions of $\operatorname{Ind}_H^{S_4} V$ into irreducible representations for every irreducible representation V of H.

Exercise 2.

Let $G = \operatorname{SL}_2(\mathbb{F}_q)$ for some prime power q and $H = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \}$ be the subgroup of upper triangular matrices. Let $\omega : k^{\times} \to \mathbb{C}^*$ be a group homomorphism. Show that $\rho : H \to \mathbb{C}^{\times}$ with $\rho(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}) = \omega(a)$ defines a 1-dimensional complex representation V of H. Show that $\operatorname{Ind}_H^G V$ is irreducible if and only if $\omega^2 \neq 1$.

Exercise 3.

Let K be a field, G a finite group and H a subgroup of G. Fix a set of representatives h_1, \ldots, h_r for G/H. For a representation V of H over K define an action of G on $K^{G/H} \otimes_K V$ by the rule $g.(h_i \otimes v) = (gh_i h^{-1}) \otimes (h.v)$ where h is the unique element in H such that $gh_i h^{-1} \in \{h_1, \ldots, h_r\}$. Show that $K^{G/H} \otimes_K V$ is a well-defined representation of G and that it is naturally isomorphic to $\operatorname{Ind}_H^G V$.

Exercise 4.

Let $G = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{F}_3) \mid a, b, d \in \mathbb{F}_3 \}$ be the subgroup of upper triangular matrices.

- 1. Determine all conjugacy classes of G.
- 2. Show that $N = \{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} | b \in \mathbb{F}_3 \}$ is a normal subgroup of G and that $G^{ab} = G/N$.
- 3. Determine all one dimensional characters of G.
- 4. Let X be the conjugacy class of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Show that G acts by conjugation on X, which defines a permutation representation \mathbb{C}^X . Show that \mathbb{C}^X is irreducible.
- 5. Complete the character table of G.

*Exercise 5 (Bonus exercise).

Let G be a finite group and H a subgroup of G. Let K be a field. For a representation V of H, define

Coind
$$V = \text{Coind}_H^G V = \text{Hom}_H(\text{Res}_H^G K^G, V) \simeq ((K^G)^* \otimes_K V)^H$$

where K^G is the regular representation of G.

- 1. Show that Coind V is a representation of G with respect to its natural structure as a K-vector space and with the action defined by $g.\alpha(h) = \alpha(gh)$ where α : Res K^G, V is an H-equivariant homomorphism.
- 2. Given an *H*-equivariant homomorphism $f: V \to V'$ of representations of *H*, show that $\alpha \mapsto f \circ \alpha$ defines a *G*-equivariant homomorphism Coind $V \to$ Coind V' of representations of *G*. Conclude that this defines a functor $\operatorname{Coind}_{H}^{G} : \operatorname{Rep}_{K}(H) \to$ $\operatorname{Rep}_{K}(G)$.
- 3. Show that $\operatorname{Coind}_{H}^{G}$ is right adjoint to $\operatorname{Res}_{H}^{G}$.
- 4. Assume that $K = \mathbb{C}$. Show that the association

$$\alpha \longmapsto \frac{1}{\#H} \sum_{g \in G} g^{-1} \otimes \alpha(g)$$

defines a canonical isomorphism Coind $V \to \operatorname{Ind} V$. Conclude that $\operatorname{Ind}_{H}^{G}$ is left and right adjoint to $\operatorname{Res}_{H}^{G}$.