Exercise 1.

Consider the natural action of S_{4} on $\{1,2,3,4\}$ and define H as the stabilizer of 4 . Show that $H \simeq S_{3}$. Determine the decompositions of $\operatorname{Ind}_{H}^{S_{4}} V$ into irreducible representations for every irreducible representation V of H.

Exercise 2.

Let $G=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ for some prime power q and $H=\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right\}$ be the subgroup of upper triangular matrices. Let $\omega: k^{\times} \rightarrow \mathbb{C}^{*}$ be a group homomorphism. Show that $\rho: H \rightarrow$ \mathbb{C}^{\times}with $\rho\left(\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\right)=\omega(a)$ defines a 1-dimensional complex representation V of H. Show that $\operatorname{Ind}_{H}^{G} V$ is irreducible if and only if $\omega^{2} \neq 1$.

Exercise 3.

Let K be a field, G a finite group and H a subgroup of G. Fix a set of representatives h_{1}, \ldots, h_{r} for G / H. For a representation V of H over K define an action of G on $K^{G / H} \otimes_{K} V$ by the rule $g .\left(h_{i} \otimes v\right)=\left(g h_{i} h^{-1}\right) \otimes(h . v)$ where h is the unique element in H such that $g h_{i} h^{-1} \in\left\{h_{1}, \ldots, h_{r}\right\}$. Show that $K^{G / H} \otimes_{K} V$ is a well-defined representation of G and that it is naturally isomorphic to $\operatorname{Ind}_{H}^{G} V$.

Exercise 4.

Let $G=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right) \right\rvert\, a, b, d \in \mathbb{F}_{3}\right\}$ be the subgroup of upper triangular matrices.

1. Determine all conjugacy classes of G.
2. Show that $N=\left\{\left.\left(\begin{array}{cc}1 & b \\ 0 & b\end{array}\right) \right\rvert\, b \in \mathbb{F}_{3}\right\}$ is a normal subgroup of G and that $G^{\text {ab }}=G / N$.
3. Determine all one dimensional characters of G.
4. Let X be the conjugacy class of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that G acts by conjugation on X, which defines a permutation representation \mathbb{C}^{X}. Show that \mathbb{C}^{X} is irreducible.
5. Complete the character table of G.
*Exercise 5 (Bonus exercise).
Let G be a finite group and H a subgroup of G. Let K be a field. For a representation V of H, define

$$
\operatorname{Coind} V=\operatorname{Coind}_{H}^{G} V=\operatorname{Hom}_{H}\left(\operatorname{Res}_{H}^{G} K^{G}, V\right) \simeq\left(\left(K^{G}\right)^{*} \otimes_{K} V\right)^{H}
$$

where K^{G} is the regular representation of G.

1. Show that Coind V is a representation of G with respect to its natural structure as a K-vector space and with the action defined by $g . \alpha(h)=\alpha(g h)$ where α : Res K^{G}, V is an H-equivariant homomorphism.
2. Given an H-equivariant homomorphism $f: V \rightarrow V^{\prime}$ of representations of H, show that $\alpha \mapsto f \circ \alpha$ defines a G-equivariant homomorphism Coind $V \rightarrow$ Coind V^{\prime} of representations of G. Conclude that this defines a functor $\operatorname{Coind}_{H}^{G}: \operatorname{Rep}_{K}(H) \rightarrow$ $\operatorname{Rep}_{K}(G)$.
3. Show that $\operatorname{Coind}_{H}^{G}$ is right adjoint to $\operatorname{Res}_{H}^{G}$.
4. Assume that $K=\mathbb{C}$. Show that the association

$$
\alpha \longmapsto \frac{1}{\# H} \sum_{g \in G} g^{-1} \otimes \alpha(g)
$$

defines a canonical isomorphism Coind $V \rightarrow \operatorname{Ind} V$. Conclude that $\operatorname{Ind}_{H}^{G}$ is left and right adjoint to $\operatorname{Res}_{H}^{G}$.

