Exercise 1.

Let V_1, \ldots, V_5 be pairwise non-isomorphic irreducible complex representations of S_4 . Calculate the decomposition of $V_i \otimes V_j$ into irreducible components for all $i, j \in \{1, \ldots, 5\}$.

Exercise 2.

Let G be a finite group.

- 1. Let χ and χ' be simple characters and $\chi'(e) = 1$. Show that $\chi \cdot \chi'$ is simple.
- 2. Define $\chi^*(g) = \overline{\chi(g)}$. Show that χ^* is a character with $(\chi^*)^* = \chi$. Show that χ^* is simple if and only if χ is simple.
- 3. Let $\sigma: G \to G$ be a group automorphism and χ a character. Define $\chi^{\sigma}(g) = \chi(\sigma(g))$. Show that χ^{σ} is a character, and that χ^{σ} is simple if and only if χ is simple.
- 4. Conclude from the previous parts of this exercise that if for a given dimension d, there is a unique simple character χ with $\chi(e) = d$, then
 - a) $\chi(g) = 0$ if there is a simple character χ' with $\chi'(e) = 1$ and $\chi'(g) \neq 1$;
 - b) $\chi(g) \in \mathbb{Z}$ for all $g \in G$;
 - c) $\chi(\sigma(g)) = \chi(g)$ for all automorphisms σ of G.

Exercise 3.

Let G be a finite group and H < G an abelian subgroup. Let V be an irreducible complex representation of G.

- 1. Show that $\operatorname{Res}_H^G V$ decomposes into a direct sum of one dimensional representations.
- 2. Let W be one such irreducible factor. Show that the sum of the subvector spaces g.W is a subrepresentation of V and thus equal to V.
- 3. Use that h.W = W for $h \in H$ to conclude that dim $V \leq \#G/\#H$.
- 4. As an application, show that every irreducible representation of a dihedral group is of dimension ≤ 2 .

Exercise 4.

Show that the elements e, (12)(34), (123), (12345) and (12354) form a complete set of representatives for the conjugacy classes of A_5 and show that the character table of A_5 is

	e	(12)(34)	(123)	(12345)	(12354)
χ_1	1	1	1	1	1
χ_2	3	-1	0	$(1+\sqrt{5})/2$	$(1-\sqrt{5})/2$
χ_3	3	-1	0	$(1-\sqrt{5})/2$	$(1+\sqrt{5})/2$
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

This can be done along the following steps:

- 1. Calculate the size of each conjugacy class.
- 2. The trivial character χ_1 comes for free.
- 3. Calculate the character χ of the permutation representation of A_5 on 5 elements. Show that $\langle \chi, \chi_1 \rangle = 1$ and that $\chi_4 := \chi \chi_1$ is a simple character.
- 4. Let $d_i = \chi_i(e)$. Determine the only possibility for the values of d_2 , d_3 and d_5 such that $60 = \sum_{i=1}^5 d_i^2$.
- 5. Since (12)(34) has order 2, the only possible eigenvalues in each representation are ± 1 . Conclude that $\chi_i(e)$ are odd integers for i=2,3,5 and that $|\chi_i(e)| \leq 3$ for i=2,3 and $|\chi_5(e)| \leq 5$. Use the orthogonality relations for the first two columns of the character table to determine the only possible values of $\chi_i((12)(34))$ for i=2,3,5.
- 6. Show that the conjugation with an element of S_5 defines an automorphism of A_5 . Conclude that $\sigma(12345) = (12354)$ for some automorphism σ of A_5 . Use Exercise 2 to show that $\chi_5(12345) = \chi_5(12354)$. Use the row orthogonality relations to determine the only possible values of χ_5 .
- 7. Use the column orthogonality relations to find the only possible values of $\chi_i((123))$ for i = 2, 3.
- 8. Use the row orthogonality relations to compute the missing values of χ_2 and χ_3 .

*Exercise 5.

Read the Wikipedia page on adjoint functors; see https://en.wikipedia.org/wiki/Adjoint_functors.