Exercises for Algebra II

List 1
To hand in at 28.8.2018 in class

Exercise 1.

Let P be a point in \mathbb{R}^{2} with coordinates x and y. Show that P is constructible from a given set of points $0,1, P_{1}, \ldots, P_{n}$ if and only if x and y are constructible (considered as points $(x, 0)$ and $(y, 0)$ of the first coordinate axis in $\left.\mathbb{R}^{2}\right)$. Conclude that the point $P_{1}+P_{2}$ (using vector addition) is constructible from $0,1, P_{1}, P_{2}$.

Exercise 2.

Let r be a positive real number. Show that $h=\sqrt{r}$ is constructible from 0,1 and r.
Hint: You are allowed to use classical geometric theorems like the theorem of Thales or the theorem of Pythagoras.

Exercise 3.

Construct the following regular n-gons with ruler and compass:

1. a regular 2^{r}-gon for $r \geq 2$;
2. a regular 3-gon;
3. a regular 5-gon.

Exercise 4.

Prove Cardano's formula: given an equation $x^{3}+p x+q=0$ with real coefficients p and q such that $\Delta=q^{2} / 4+p^{3} / 27>0$, then

$$
x=\sqrt[3]{-\frac{q}{2}+\sqrt{\Delta}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\Delta}}
$$

is a solution.

Exercise 5.

Find all solutions for $x^{4}-2 x^{3}-2 x-1=0$.
Hint: Use Ferrari's formula.

Exercise 6 (very difficult; not to hand in). Find solutions to the following classical problems:

1. Given a positive real number r, is it possible to construct the cube root $\sqrt[3]{r}$?
2. Given an angle φ, is it possible to construct $\varphi / 3$?
3. Given a circle with area A, is it possible to construct a square with area A ?
