Exercise 1 (Integral homomorphisms are stable under base change). Let A be a ring, B an A-algebra and $f: C \to D$ an integral homomorphism of A-algebras. Show that $C \otimes_A B \to D \otimes_A B$ is integral.

Exercise 2.

Let B be an integral domain and A a subring of B. Assume either that B - A is closed under multiplication or that $B = S^{-1}A$ for some multiplicative set S in A. Show that A is integrally closed in B.

Exercise 3 (Jacobson rings).

A ring is Jacobson A if every ideal of A is an intersection of maximal ideals. Show the following strenghtening of Theorem 5.5.5 of the lecture: every finitely generated algebra over a field is Jacobson.

Exercise 4.

Let k be a field and $f: A \to B$ a homomorphism between finitely generated k-algebras. Show that the inverse image $f^{-1}(\mathfrak{m})$ of a maximal \mathfrak{m} of B is a maximal ideal of A.

Exercise 5.

Complete the proof of Proposition 1 in section 5.7 of the lecture.

Here are some additional exercises from Atiyah-Macdonald (which are not to hand in): chapter 5, exercises 2, 4, 8 and 14.