Exercise 1 (Irreducible components).

Let A be a ring and I and ideal of A. Show that the following are equivalent.

- 1. V(I) is an irreducible topological subspace of Spec A.
- 2. \sqrt{I} is a prime ideal.
- 3. V(I) contains a unique minimal prime ideal.

Assume that I has a primary decomposition and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be the isolated primes of I. Show that $V(I) = \bigcup_{i=1}^n V(\mathfrak{p}_i)$ is the unique minimal decomposition of V(I) into irreducible topological subspace of Spec A.

Remark: If V(I) is irreducible, then its unique minimal prime ideal is called its *generic* point. The subspaces $V(\mathfrak{p}_i)$ of V(I) are called the *irreducible components* of V(I).

Exercise 2 (Integrally closed is a local property).

Let A be an integral domain. Show that the following are equivalent.

- 1. A is integrally closed.
- 2. $A_{\mathfrak{p}}$ is integrally closed for every prime ideal \mathfrak{p} of A.
- 3. $A_{\mathfrak{m}}$ is integrally closed for every maximal ideal \mathfrak{m} of A.

Exercise 3.

Let $A \subset B$ be an integral extension of rings. Show that $A^{\times} = B^{\times} \cap A$ and that $Jac(A) = Jac(B) \cap A$.

Exercise 4 (Faithfully flat algebras).

Let $f: A \to B$ be a flat A-algebra. Show that the following are equivalent.

- 1. $f^*(f_*(I)) = I$ for all ideals I of A.
- 2. Spec $B \to \text{Spec } A$ is surjective.
- 3. $f_*(\mathfrak{m}) \neq B$ for every maximal ideal \mathfrak{m} of A.
- 4. $M \otimes_A B \neq \{0\}$ for every A-module $M \neq \{0\}$.
- 5. The A-linear map $\iota: M \to M \otimes_A B$ with $\iota(m) = m \otimes 1$ is injective for every A-module M.

Remark: A flat *A*-algebra with these properties is called *faithfully flat*. See Exercise 16 of Atiyah-Macdonald's book for hints.

Exercise 5 (Flat algebras have the going down property).

Let $f : A \to B$ be a flat A-algebra, $\mathfrak{q} \subset B$ a prime ideal and $\mathfrak{p} = f^{-1}(\mathfrak{q})$. Show that $A_{\mathfrak{p}} \to B_{\mathfrak{q}}$ is faithfully flat. Conclude that $A \to B$ has the *going-down property*, i.e. for every prime ideal $\mathfrak{p}' \subset \mathfrak{p}$ of A, there is a prime ideal $\mathfrak{q}' \subset \mathfrak{q}$ of B such that $\mathfrak{p}' = f^{-1}(\mathfrak{q}')$.