Exercise 1.

Find a minimal primary decomposition of $I=\left(x^{3} y-x^{3}, x^{2} y^{2}-x^{2} y, x y^{3}-x y^{2}\right)$ in $k[x, y]$ and determine the set $\operatorname{Ass}(I)$ of associated primes of I. Find generators of $I_{\Sigma}=\bigcap_{\mathfrak{q}_{i} \in \Sigma} \mathfrak{q}_{i}$ for all isolated subsets Σ of $\operatorname{Ass}(I)$. Make an illustration of the affine variety $Z(I)$ in \mathbb{A}_{k}^{2}.

Exercise 2.

Let A be a ring and I an irreducible ideal of A. Show that the following conditions on I are equivalent.

1. I is primary.
2. For every multiplicative set S in A and localization $\iota: A \rightarrow S^{-1} A$, we have $\iota^{-1}\left(S^{-1} I\right)=(I: a)$ for some $a \in A$.
3. The sequence

$$
(I: 1) \subset(I: a) \subset\left(I: a^{2}\right) \subset \cdots
$$

is stationary for every $a \in A$.
Show that the ideal $I=\left(x^{2}, x y, y^{2}\right)$ of $A=k[x, y]$ is primary, but not irreducible.

Exercise 3.

Let A be a ring.

1. If $A[T]$ is Noetherian, is A necessarily Noetherian?
2. If A is a subring of a Noetherian ring B, is A necessarily Noetherian?
3. If the localization $A_{\mathfrak{p}}$ of A at every prime ideal \mathfrak{p} is Noetherian, is A necessarily Noetherian?

Exercise 4.

Let k be an algebraically closed field and $V \subset \mathbb{A}_{k}^{n}$ be an affine variety. Show that there are finitely many polynomials $f_{1}, \ldots, f_{r} \in k\left[T_{1}, \ldots, T_{n}\right]$ such that

$$
V=\left\{a \in \mathbb{A}_{k}^{n} \mid f_{1}(a)=\ldots=f_{r}(a)=0\right\}
$$

