Exercise 1.

Let A be an integral domain with field of fractions K and M an A-module. The torsion submodule of M is the set $T(M) = \{m \in M | \operatorname{Ann}(m) \neq \{0\}\}.$

1. Show that T(M) is equal to the kernel of the A-linear map $M \to M \otimes_A K$, sending m to $m \otimes 1$, and conclude that T(M) is an A-submodule of M.

Hint: Use that $M \otimes_A K \simeq S^{-1}M$ for $S = A - \{0\}$.

- 2. Show that $\overline{M} = M/T(M)$ is torsion-free, i.e. $T(\overline{M}) = 0$.
- 3. Let $f: M \to N$ be an A-linear map. Show that $f(T(M)) \subset T(N)$.
- 4. An torsion module over A is an A-module M such that T(M) = M. Define $A \text{Mod}^t$ as the category of torsion A-modules together with A-linear maps and define $T(f) = f|_{T(M)} : T(M) \to T(N)$. Show that this defines a functor $T : \mathbb{A} \text{Mod} \to A \text{Mod}^t$.
- 5. Show that T is right adjoint to the inclusion $\iota : A \text{Mod}^t \to A \text{Mod}$ as a subcategory and conclude that T is left exact.

Exercise 2.

Let A be a ring and $f: N \to M$ and $g: M \to P$ be A-linear maps. Show that the following are equivalent.

- 1. $N \to M \to P$ is exact at M.
- 2. $N_{\mathfrak{p}} \to M_{\mathfrak{p}} \to P_{\mathfrak{p}}$ is exact at $M_{\mathfrak{p}}$ for all prime ideals \mathfrak{p} of A.
- 3. $N_{\mathfrak{m}} \to M_{\mathfrak{m}} \to P_{\mathfrak{m}}$ is exact at $M_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} of A.

Exercise 3.

Let $f : A \to B$ be a ring homomorphism, M an A-module and N a B-module. Show that the extension of scalars $f_*(M) = M \otimes_A B$ and the restriction of scalars $f^*(N) = N$ (considered as A-module) extend to functors $f_* : A - Mod \to B - Mod$ and $f^* : B - Mod \to A - Mod$ such that f_* is left-adjoint to f^* .

Exercise 4.

Let A be a principal ideal domain. Show that every ideal of A has a primary decomposition.

Exercise 5.

Let k be a field and A = k[x, y, z]. Consider the prime ideals $\mathfrak{p} = (x, y)$ and $\mathfrak{q} = (x, z)$ and the maximal ideal $\mathfrak{m} = (x, y, z)$. Show that $I = \mathfrak{p} \cap \mathfrak{q} \cap \mathfrak{m}^2$ is a reduced primary decomposition of $I = \mathfrak{p} \cdot \mathfrak{q}$. Which components are isolated and which are embedded? Make an illustration of the affine variety $\widetilde{V}(I)$ in \mathbb{A}^3_k and the respective (irreducible and embedded) components.

Here are some additional exercises from Atiyah-Macdonald (which are not to hand in): chapter 3, exercises 13, 19 and 21; chapter 4, exercises 10 and 11.