Exercise 1.

Let A be an integral domain with field of fractions K and M an A-module. The torsion submodule of M is the set $T(M)=\{m \in M \mid \operatorname{Ann}(m) \neq\{0\}\}$.

1. Show that $T(M)$ is equal to the kernel of the A-linear map $M \rightarrow M \otimes_{A} K$, sending m to $m \otimes 1$, and conclude that $T(M)$ is an A-submodule of M.

Hint: Use that $M \otimes_{A} K \simeq S^{-1} M$ for $S=A-\{0\}$.
2. Show that $\bar{M}=M / T(M)$ is torsion-free, i.e. $T(\bar{M})=0$.
3. Let $f: M \rightarrow N$ be an A-linear map. Show that $f(T(M)) \subset T(N)$.
4. An torsion module over A is an A-module M such that $T(M)=M$. Define $A-\operatorname{Mod}^{t}$ as the category of torsion A-modules together with A-linear maps and define $T(f)=\left.f\right|_{T(M)}: T(M) \rightarrow T(N)$. Show that this defines a functor $T:$ $\mathbb{A}-\operatorname{Mod} \rightarrow A-\operatorname{Mod}^{t}$.
5. Show that T is right adjoint to the inclusion $\iota: A-\operatorname{Mod}^{t} \rightarrow A-\operatorname{Mod}$ as a subcategory and conclude that T is left exact.

Exercise 2.

Let A be a ring and $f: N \rightarrow M$ and $g: M \rightarrow P$ be A-linear maps. Show that the following are equivalent.

1. $N \rightarrow M \rightarrow P$ is exact at M.
2. $N_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}} \rightarrow P_{\mathfrak{p}}$ is exact at $M_{\mathfrak{p}}$ for all prime ideals \mathfrak{p} of A.
3. $N_{\mathfrak{m}} \rightarrow M_{\mathfrak{m}} \rightarrow P_{\mathfrak{m}}$ is exact at $M_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} of A.

Exercise 3.

Let $f: A \rightarrow B$ be a ring homomorphism, M an A-module and N a B-module. Show that the extension of scalars $f_{*}(M)=M \otimes_{A} B$ and the restriction of scalars $f^{*}(N)=N$ (considered as A-module) extend to functors $f_{*}: A-\operatorname{Mod} \rightarrow B-\operatorname{Mod}$ and $f^{*}:$ $B-\operatorname{Mod} \rightarrow A-\operatorname{Mod}$ such that f_{*} is left-adjoint to f^{*}.

Exercise 4.

Let A be a principal ideal domain. Show that every ideal of A has a primary decomposition.

Exercise 5.

Let k be a field and $A=k[x, y, z]$. Consider the prime ideals $\mathfrak{p}=(x, y)$ and $\mathfrak{q}=(x, z)$ and the maximal ideal $\mathfrak{m}=(x, y, z)$. Show that $I=\mathfrak{p} \cap \mathfrak{q} \cap \mathfrak{m}^{2}$ is a reduced primary decomposition of $I=\mathfrak{p} \cdot \mathfrak{q}$. Which components are isolated and which are embedded? Make an illustration of the affine variety $\widetilde{V}(I)$ in \mathbb{A}_{k}^{3} and the respective (irreducible and embedded) components.

Here are some additional exercises from Atiyah-Macdonald (which are not to hand in): chapter 3 , exercises 13,19 and 21 ; chapter 4 , exercises 10 and 11 .

