Exercise 1.

Let A be a ring, $g \in A$ and $S \subset A$. Let U_{g} be the associated principal open subset of Spec A. Show that $U_{g} \subset \bigcup_{h \in S} U_{h}$ if and only if g is an element of the ideal generated by S. Conclude that $\operatorname{Spec} A$ is quasi-compact.

Exercise 2.

Let A and B be rings.

1. A topological space is irreducible if it is non-empty and if it cannot be written as the union of two proper closed subsets. Show that $\operatorname{Spec} A$ is irreducible if and only if the nilradical $\operatorname{Nil}(A)$ of A is a prime ideal.
2. Show that $\operatorname{Spec}(A \times B)$ is homeomorphic to the disjoint union of $\operatorname{Spec} A$ with Spec B. Conclude that Spec sends finite products to finite coproducts.

Bonus exercise: Does Spec send infinite products to infinite coproducts?

Exercise 3.

Let k be an algebraically closed field and $X \in \mathbb{A}_{k}^{n}$ and $Y \subset \mathbb{A}_{k}^{m}$ affine k-varieties with respective rings of regular functions $A_{X}=k\left[T_{1}, \ldots, T_{n}\right] / I_{X}$ and $A_{Y}=k\left[T_{1}, \ldots, T_{m}\right] / I_{Y}$.

1. Let $\varphi: Y \rightarrow X$ be a regular map that is given by the rule $\varphi\left(\mathfrak{m}_{a}\right)=\mathfrak{m}_{b}$ where $b=\left(g_{1}(a), \ldots, g_{n}(a)\right)$ for polynomials $g_{1}, \ldots, g_{n} \in k\left[T_{1}, \ldots, T_{m}\right]$.
a) Show that $\varphi^{*}(f)=f \circ \varphi$ defines a homomorphism $\varphi^{*}: A_{X} \rightarrow A_{Y}$ of k algebras.
b) Show that $\varphi^{*}\left(\left[T_{i}\right]\right)=\left[g_{i}\right]$ where $\left[T_{i}\right]$ is the class of T_{i} in A_{X} and $\left[g_{i}\right]$ is the class of g_{i} in A_{Y}.
2. Let $f: A_{X} \rightarrow A_{Y}$ be a homomorphism of k-algebras and $f\left(\left[T_{i}\right]\right)=\left[f_{i}\right]$ for certain $f_{1}, \ldots, f_{n} \in k\left[T_{1}, \ldots, T_{m}\right]$.
a) Show that for any $a=\left(a_{1}, \ldots, a_{m}\right) \in k^{m}$, the linear polynomial $T_{i}-f_{i}(a)$ is an element of $f^{-1}\left(\overline{\mathfrak{m}}_{a}\right)$.
b) Conclude that $f^{-1}\left(\overline{\mathfrak{m}}_{a}\right)=\overline{\mathfrak{m}}_{b}$ for $b=\left(f_{1}(a), \ldots, f_{n}(a)\right)$ and thus $f^{*}: Y \rightarrow X$ is a regular map.
3. Prove Theorem 2 of section 2.3 of the lecture.

Exercise 4.

Let k be an algebraically closed field and $X \in \mathbb{A}_{k}^{n}$ and $Y \subset \mathbb{A}_{k}^{m}$ affine k-varieties with respective rings of regular functions A_{X} and A_{Y}. Let Z be the Cartesian product of X and Y (as sets), which is naturally a subset of \mathbb{A}_{k}^{n+m}.

1. Show that Z together with the inclusion $Z \subset \mathbb{A}_{k}^{n+m}$ is a k-variety whose ring of regular functions A_{Z} is isomorphic to $A_{X} \otimes_{k} A_{Y}$.
2. Show that Z, together with the obvious projections $\pi_{X}: Z \rightarrow X$ and $\pi_{Y}: A \rightarrow Y$, is the product of X and Y in the category of affine k-varieties.
