Exercise 1.

Verify the following isomorphisms:

$$
A / I \otimes_{A} M \simeq M / I M, \quad S^{-1} A \otimes_{A} M \simeq S^{-1} M, \quad \mathbb{Z} / n \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / m \mathbb{Z} \simeq \mathbb{Z} / d \mathbb{Z}
$$

where A is a ring, $I \subset A$ is an ideal, M is an A-module and $S \subset A$ is a multiplicative subset, and n, m are positive integers with greatest common divisor d.

Exercise 2.

Let A be a local ring and M and $N A$-modules such that $M \otimes_{A} N=0$. Show that either $M=0$ or $N=0$. Is this conclusion true if A is not local?
Hint: Apply Nakayama's Lemma to reduce the question to the case of a field by dividing by the maximal ideal.

Exercise 3.

Let A be a ring and P an A-module. Show that the following are equivalent.

1. $\operatorname{Hom}_{A}(P,-)$ is an exact functor.
2. There is an A-module Q such that $P \oplus Q$ is free.
3. For every surjective homomorphism $f: N \rightarrow M$ of A-modules and every homomorphism $g: P \rightarrow M$ there exists a homomorphism $h: P \rightarrow N$ such that $g=f \circ h$.

An A-module with these properties is called projective. Conclude that every free A module is projective and every projective A-module is flat.

Exercise 4.

Let $f: A \rightarrow B$ be a homomorphism of rings and N a B-module. Let $f^{*} N$ be the A-module given by restriction of scalars. Let $s: N \rightarrow f^{*} N \otimes_{A} B$ be the A-linear map with $n \mapsto n \otimes 1$ and $p: f^{*} N \otimes_{A} B \rightarrow N$ the A-linear map with $n \otimes b \mapsto b$. n. Show that $p \circ s$ is the identity on N and conclude that N is a direct summand of $f^{*} N \otimes_{A} B$.

