Exercise 1.

Show that a \mathbb{Z} -module is injective if and only if it is divisible. Let $A \to B$ be a ring homomorphism and I an injective A-module. Show that $\operatorname{Hom}_A(B, I)$ is an injective B-module.

Exercise 2.

Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be an additive functor between abelian categories \mathcal{A} and \mathcal{B} . Then the association

$$\begin{array}{cccc} L_i \mathcal{F} : & \mathcal{A} & \longrightarrow & \mathcal{B} \\ & M & \longmapsto & H_i \big(\mathcal{F}(P_{\bullet}) \big) \\ & \left[f : M \to N \right] & \longmapsto & \left[H_i (f_{\bullet}) : H_i \big(\mathcal{F}(P_{\bullet}) \big) \to H_i \big(\mathcal{F}(P_{\bullet}') \big) \right] \end{array}$$

defines a functor for every *i* that does not depend on the choices of the projective resolutions P_{\bullet} of M and P'_{\bullet} of N and of the morphism $f_{\bullet}: P_{\bullet} \to P'_{\bullet}$ with $H_0(f_{\bullet}) = f$. Moreover, if \mathcal{F} is right exact, then $\epsilon: P_0 \to M$ induces a natural equivalence $L_0\mathcal{F} \to \mathcal{F}$ of functors. If, in addition, M is projective, then $L_i\mathcal{F}(M) = 0$ for all i > 0.

Exercise 3.

Let $A = \mathbb{Z}/n\mathbb{Z}$ for some $n \ge 2$ and M = A/(d) for some divisor d of n. Calculate $\operatorname{Tor}_i(M, N)$ for all A-modules N and all $i \ge 0$.

Exercise 4.

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and residue field k. Let M be a finitely generated A-module. Show that the following are equivalent.

- 1. M is free.
- 2. M is flat.
- 3. The inclusion $\mathfrak{m} \to A$ induces an injective map $\mathfrak{m} \otimes_A M \to A \otimes_A M$.
- 4. $\operatorname{Tor}_{1}^{A}(k, M) = 0.$

Hint: Exercise 15 of chapter 7 in Atiyah-Macdonald's book contains hints.

Exercise 5.

Let A be a Noetherian ring and M a finitely generated A-module. Show that the following are equivalent.

- 1. M is projective.
- 2. M is flat.
- 3. $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m} of A.
- 4. There are elements $a_1, \ldots, a_n \in A$ that generate the unit ideal $(1) = (a_1, \ldots, a_n)$ such that $M[a_i^{-1}]$ is a free $A[a_i^{-1}]$ -module for $i = 1, \ldots, n$ where $M[a^{-1}] = S^{-1}M$ for $S = \{a^k\}_{k \ge 0}$.

Remark: We say that M is *locally free* if it satisfies property 4. This is closely connected to the notion of a vector bundle over Spec A.