Exercise 1.

Show that every Noetherian unique factorization domain of dimension 1 is a principal ideal domain. Conclude that a Dedekind domain is a unique factorization domain if and only if it is a principal ideal domain.

Exercise 2.

Let A be a Dedekind domain and $I \subset A$ a nonzero ideal. Show that every ideal in A/I is principal. Conclude that every ideal in A can be generated by at most 2 elements.

Exercise 3.

Let k be an algebraically closed field. Show that $\dim k[X, Y] = 2$ along the following steps.

- 1. Show that dim $k[X, Y] \ge 2$.
- 2. Consider a maximal chain $\mathfrak{p}_0 \subsetneq \ldots \subsetneq \mathfrak{p}_l$ of prime ideals in k[X,Y]. Reason that $\mathfrak{p}_0 = (0)$ and $\mathfrak{p}_l = (X a, Y b)$ for some $a, b \in k$.
- 3. Let $\mathfrak{q}_i = \mathfrak{p}_i \cap k[X]$. Show that there is some k such that $\mathfrak{q}_i = (0)$ for $i = 0, \ldots, k$ and $\mathfrak{q}_i = (X - a)$ for $i = k + 1, \ldots, l$.
- 4. Show that k is 0 or 1 by localizing k[X, Y] and k[X] at the common multiplicative subset $S = k[X] \{0\}$ and observing that $S^{-1}k[X, Y]$ is a principal ideal domain.
- 5. Conclude that l = 2 by dividing k[X, Y] by (X a), which yields, once again, a principal ideal domain.

Note that this proof shows the stronger fact that every maximal chain of prime ideals in k[X, Y] has length 2.

Exercise 4.

Let k be an algebraically closed field and $f \in k[X,Y]$ irreducible. Show that A = k[X,Y]/(f) is a Dedekind domain if and only if $(f,\partial f/\partial X,\partial f/\partial Y) = k[X,Y]$.

Exercise 5.

Let k be an algebraically closed field, $f = Y^2 - X^3 - X^2$ and A = k[X, Y]/(f). Verify that A is a Noetherian domain of dimension 1. Find all singularities of the plane affine curve $C = \overline{Z}(Y^2 - X^3 - X^2)$. Show that the homomorphism

f

$$\begin{array}{ccccc} : & A & \longrightarrow & k[T] \\ & [X] & \longmapsto & T^2 - 1 \\ & [Y] & \longmapsto & T(T^2 - 1) \end{array}$$

is well-defined and defines an integral extension of rings that induces an isomorphism \tilde{f} : Frac $A \to \operatorname{Frac} k[T] = k(T)$ between the respective fraction fields. Conclude that \tilde{f} identifies the integral closure of A in Frac A with k[T]. Show that there is a nonsingular plane affine curve \overline{C} with coordinate ring isomorphic to k[T]. Describe a morphism of affine varieties $\varphi : \overline{C} \to C$ whose associated homomorphism of coordinate rings is f. Show that φ is the normalization of C. Make an illustration of φ .