Exercises for Algebraic Number Theory

List 7 (not to hand in)

*Exercise 1.

Show that

$$\begin{array}{ccc} \mathbb{Z}[[T]] & \longrightarrow & \mathbb{Z}_p \\ \sum_{i \geq 0} a_i T^i & \longmapsto & \sum_{i \geq 0} a_i p^i \end{array}$$

with $a_i \in \{0, ..., p-1\}$ is a well-defined homomorphism of rings that is surjective and has kernel (T-p).

Exercise 2.

Show that the *p*-adic integer $\sum_{i>0} a_i p^i$ is in \mathbb{Z}_p^{\times} if and only if $a_0 \neq 0$.

Hint: Use Hensel's Lemma.

*Exercise 3.

 \mathbb{Q}_p and \mathbb{Q}_q are isomorphic (as fields) for two prime numbers p and q if and only if p = q. Hint: Make use of the different splitting behaviours of polynomials in $\mathbb{Z}[T]$ modulo p and q, respectively.

*Exercise 4.

Determine all places of $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{5})$.

*Exercise 5.

Determine all archimedean places of $\mathbb{Q}(\zeta_n)$ and $\mathbb{Q}(\sqrt[n]{2})$ where $n \geq 1$ and ζ_n is a primitive n-th root of unity.

*Exercise 6.

Let L/K be a finite separable extension, v a discrete valuation of K with valuation ring $A = \mathcal{O}_v$ and B the integral closure of A in L. Let \hat{v} be the extension of v to the completion K_v of K at v, and $\mathcal{O}_{\hat{v}}$ its valuation ring. Show that

$$B \otimes_A \mathcal{O}_{\hat{v}} = \prod_{w|v} \mathcal{O}_{\hat{w}}$$

where w|v varies over all extensions w of v to L and $\mathcal{O}_{\hat{w}}$ is the valuation ring of the extension \hat{w} of w to the completion L_w of L at w.

*Exercise 7.

What is the relation of Proposition 1 in section 2.6 to Proposition 1 in section 1.7 of the lecture?

*Exercise 8.

Let K be a field of positive characteristic p.

- 1. Show that $K_0((T))/K_0(T)$ is not an algebraic extension.
- 2. Let $X \in K_0((T))$ be transcendental over $K_0(T)$, $K = K_0(T, X^p)$ and $L = K_0(T, X)$. Show that L/K has degree p and that the fundamental identity does not hold for the T-adic valuation v_T of K.

Hint: Use that v_T extends uniquely to $K_0((T))$.

*Exercise 9.

Let A be a Dedekind domain, K its fraction field, L/K a finite separable field extension of degree n and B the integral closure of A in L. Let $\mathfrak{q} \subset B$ be a nonzero prime ideal such that $k(\mathfrak{q}) = B/\mathfrak{q}$ is separable over $k(\mathfrak{p}) = A/\mathfrak{p}$ where $\mathfrak{p} = \mathfrak{q} \cap A$. Show that there is an element $b \in B$ such that L = K(b) and the conductor \mathfrak{f} of A[b] is coprime to \mathfrak{q} .

Hint: This is exercise 2 in Chapter III of Serre's book Local Fields.

*Exercise 10.

Let K be a field with a non-archimedean absolute value $|\cdot|$. For a polynomial $f = a_n T^n + \cdots + a_0$ in K[T], define

$$|f| = \max\{|a_0|, \dots, |a_n|\}.$$

Show that with this definition, $|\cdot|$ extends uniquely to a non-archimedean absolute value of K(T).

Hint: $|fg| = |f| \cdot |g|$ can be proven in analogy to Gauss' lemma.

*Exercise 11.

Prove all basic facts from section 2.4.

*Exercise 12.

Determine for some (or all) $n \leq 10$ the prime decomposition of 2, 3, 5 and ∞ in $\mathbb{Q}(\zeta_n)$ where ζ_n is a primitive 12-th root of unity. In particular, determine the different places above 2, 3, 5 and ∞ , their ramification indices and their inertia degrees. Calculate the decomposition and inertia fields of the primes above 2, 3 and 5. Show that the class number of $\mathbb{Q}(\zeta_n)$ is 1.

*Exercise 13.

Calculate the class group of $\mathbb{Q}(\sqrt{7})$. *Hint*: $2 = (3 + \sqrt{7})(3 - \sqrt{7})$ and $-1 + \sqrt{7} = (2 + \sqrt{7})(3 - \sqrt{7})$.

*Exercise 14.

Let L/K be a Galois extension of number field with non-cyclic Galois group. Show that all places of K but a finite number of exceptions have more than one extension to L. *Hint:* Recall that the Galois groups of extensions of finite fields are cyclic.

*Exercise 15. Let p be a prime number.

- 1. Let $a \in \mathbb{Q}_p^{\times}$. Prove that $a \in \mathbb{Z}_p^{\times}$ if and only if a has a n-th root in \mathbb{Q}_p for infinitely many $n \geq 0$, i.e. $a = b^n$ for some $b \in \mathbb{Q}_p$.
- 2. Prove that the only field automorphism of \mathbb{Q}_p is the identity map.

Hint: Use 1 to show that every field automorphism must map \mathbb{Z}_p^{\times} to \mathbb{Z}_p^{\times} .