Exercises for Algebraic Number Theory

List 4
to hand in at 30.1.2017 in the exercise class

Exercise 1 (Fundamental units).
Let $D \geq 2$ be a squarefree integer and let \mathcal{O}_{K} be the ring of integers of $K=\mathbb{Q}[\sqrt{D}]$. A fundamental unit of K is an element ϵ of \mathcal{O}_{K}^{\times}such that $\mathcal{O}_{K}^{\times}=\left\{ \pm \epsilon^{i}\right\}_{i \in \mathbb{Z}}$.

1. Fix an embedding $K \hookrightarrow \mathbb{R}$. Show that each of the intervals $(-\infty,-1),(-1,0)$, $(0,1)$ and $(1, \infty)$ contains precisely one fundamental unit of K.
2. Conclude that for a unit $u=a+b \sqrt{D} \in \mathcal{O}_{K}^{\times}$, we have $u>1$ if and only if $a, b>0$.
3. Let $u=a+b \sqrt{D} \in \mathcal{O}_{K}^{\times}$be a unit larger than 1 and $u^{n}=c+d \sqrt{D}$ with $n \geq 1$. Show that $a \leq c$ and $b \leq d$.
4. Use this to determine fundamental units for $D \in\{2,3,5,6,7,10\}$.

Exercise 2 (Pell equation).
Find all solutions $(a, b) \in \mathbb{Z}$ with $|a|,|b| \leq 200$ to the Pell equations $X^{2}-3 Y^{2}=1$ and $X^{2}-5 Y^{2}=1$.

Extra exercise: Show that the Pell equation $X^{2}+D Y^{2}=1$ has an integer solution (a, b) with $b>0$ for every squarefree $D \geq 2$.

Exercise 3.

Let p be a prime number. Show that

- p ramifies in $\mathbb{Z}[i]$ if and only if $p=2$;
- p splits in $\mathbb{Z}[i]$ if and only if $p \equiv 1(\bmod 4)$;
- p is inert in $\mathbb{Z}[i]$ if and only if $p \equiv 3(\bmod 4)$;

Hint: Use that $p=a^{2}+b^{2}=(a+b i)(a-b i)$ if and only if $p \equiv 1$ or $2(\bmod 4)$.

Exercise 4.

1. Show that $\mathbb{Z}[\sqrt[3]{2}]$ is the ring of algebraic integers of $\mathbb{Q}(\sqrt[3]{2})$.
2. What is the conductor of $\mathbb{Z}[\sqrt[3]{2}]$ (w.r.t. \mathbb{Z})?
3. Determine the prime decompositions of the ideals $2 B, 3 B, 5 B$ and $7 B$ in $B=$ $\mathbb{Z}[\sqrt[3]{2}]$.

Hint: Part 1 can be solved as follows. Let $\delta=\sqrt[3]{2}$. If $f=T^{3}+c_{2} T^{2}+c_{1} T+c_{0}$ is the minimal polynomial of an element $z=a+b \delta+c \delta^{2} \in \mathbb{Q}(\delta)$ with $a, b, c \in \mathbb{Q}$, then $c_{2}=3 a$, $c_{1}=3 a^{2}-6 b c$ and $c_{0}=a^{3}+2 b^{3}+4 c^{3}-6 a b c$. Consider c_{2}, c_{1}, c_{0} for $z, \delta z$ and $\delta^{2} z$ to show that $c_{2}, c_{1}, c_{0} \in \mathbb{Z}$ only if $a, b, c \in \mathbb{Z}$.

Exercise 5.

Let A be a Dedekind domain.

1. Show that given pairwise coprime ideals I_{1}, \ldots, I_{n} and elements $a_{1}, \ldots, a_{n} \in A$, then there is an element $b \in A$ such that $b \equiv a_{i}\left(\bmod I_{i}\right)$ for $i=1, \ldots, n$. (Hint: Use the Chinese remainder theorem.)
2. Show that any powers of different nonzero prime ideals of I are coprime.
3. Conclude that given an ideal $I=\prod \mathfrak{p}_{i}^{e_{i}}$ of A and a nonzero $a \in I$ with $(a)=$ $\prod \mathfrak{p}_{i}^{e_{i}^{\prime}} \cdot \prod \mathfrak{q}_{j}^{f_{j}}$, there exists a $b \in I$ such that $I=(a, b)$.

*Exercise 6.

Recall the proof of the main theorem of Galois theory.

*Exercise 7.

Recall the proofs of all basic facts about localizations of rings and modules.

*Exercise 8.

Let A be a Dedekind domain, K its fraction field, L / K a finite separable field extension of degree n and B the integral closure of A in L. Show that B is a Dedekind domain.
*Exercise 9 (Classification of finitely generated modules over a Dedekind domain). Let A be a Dedekind domain and M a finitely generated torsionfree A-module.

1. Show that there are ideal I_{1}, \ldots, I_{n} of A such that $M \simeq I_{1} \oplus \cdots \oplus I_{n}$.
2. Show that $I_{1} \oplus \cdots \oplus I_{n} \simeq J_{1} \oplus \cdots \oplus J_{m}$ for ideals $I_{1}, \ldots, I_{n}, J_{1}, \ldots, J_{m}$ of A if and only if $n=m$ and if the products $I_{1} \cdots I_{n}$ and $J_{1} \cdots J_{n}$ represent the same class in the class group $\mathrm{Cl}(A)$ of A.
3. Conclude that the isomorphism classes of nonzero finitely generated torsionfree A-modules M correspond bijectively to pairs of a natural number $n \in \mathbb{N}$ and a class $[I] \in \mathrm{Cl}(A)$ via $M \simeq A^{n} \oplus I$.
4. Show more generally that every finitely generated A-module M is isomorphic to a direct sum of the form

$$
A^{n} \oplus I \oplus A / \mathfrak{p}_{1}^{e_{1}} \oplus \cdots \oplus A / \mathfrak{p}_{r}^{e_{r}}
$$

for some $n, r, e_{1}, \ldots, e_{r} \geq 0$, some ideal $I \subset A$ and some non-zero prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r} \subset A$.

Hint: A proof can be found in [Jacobson, Basic Algebra 2, 10.6]. If A is a PID, then this is an easy consquence of the elementary divisor theorem (what are the classes of $\mathrm{Cl}(A)$ in this case?).

The starred exercises are not to hand in.

