
Exercises for Algebraic Number Theory
List 4 to hand in at 30.1.2017 in the exercise class

Exercise 1 (Fundamental units).
Let D ≥ 2 be a squarefree integer and let OK be the ring of integers of K = Q[

√
D]. A

fundamental unit of K is an element ε of O×K such that O×K = {±εi}i∈Z.

1. Fix an embedding K ↪→ R. Show that each of the intervals (−∞,−1), (−1, 0),
(0, 1) and (1,∞) contains precisely one fundamental unit of K.

2. Conclude that for a unit u = a+ b
√
D ∈ O×K , we have u > 1 if and only if a, b > 0.

3. Let u = a + b
√
D ∈ O×K be a unit larger than 1 and un = c + d

√
D with n ≥ 1.

Show that a ≤ c and b ≤ d.

4. Use this to determine fundamental units for D ∈ {2, 3, 5, 6, 7, 10}.

Exercise 2 (Pell equation).
Find all solutions (a, b) ∈ Z with |a|, |b| ≤ 200 to the Pell equations X2 − 3Y 2 = 1 and
X2 − 5Y 2 = 1.

Extra exercise: Show that the Pell equation X2 +DY 2 = 1 has an integer solution (a, b)
with b > 0 for every squarefree D ≥ 2.

Exercise 3.
Let p be a prime number. Show that

• p ramifies in Z[i] if and only if p = 2;

• p splits in Z[i] if and only if p ≡ 1 (mod 4);

• p is inert in Z[i] if and only if p ≡ 3 (mod 4);

Hint: Use that p = a2 + b2 = (a+ bi)(a− bi) if and only if p ≡ 1 or 2 (mod 4).

Exercise 4.

1. Show that Z[ 3
√

2] is the ring of algebraic integers of Q( 3
√

2).

2. What is the conductor of Z[ 3
√

2] (w.r.t. Z)?

3. Determine the prime decompositions of the ideals 2B, 3B, 5B and 7B in B =
Z[ 3
√

2].

Hint: Part 1 can be solved as follows. Let δ = 3
√

2. If f = T 3 + c2T
2 + c1T + c0 is the

minimal polynomial of an element z = a+ bδ+ cδ2 ∈ Q(δ) with a, b, c ∈ Q, then c2 = 3a,
c1 = 3a2 − 6bc and c0 = a3 + 2b3 + 4c3 − 6abc. Consider c2, c1, c0 for z, δz and δ2z to
show that c2, c1, c0 ∈ Z only if a, b, c ∈ Z.



Exercise 5.
Let A be a Dedekind domain.

1. Show that given pairwise coprime ideals I1, . . . , In and elements a1, . . . , an ∈ A,
then there is an element b ∈ A such that b ≡ ai (mod Ii) for i = 1, . . . , n. (Hint:
Use the Chinese remainder theorem.)

2. Show that any powers of different nonzero prime ideals of I are coprime.

3. Conclude that given an ideal I =
∏

peii of A and a nonzero a ∈ I with (a) =∏
p
e′i
i ·

∏
q
fj
j , there exists a b ∈ I such that I = (a, b).

∗Exercise 6.
Recall the proof of the main theorem of Galois theory.

∗Exercise 7.
Recall the proofs of all basic facts about localizations of rings and modules.

∗Exercise 8.
Let A be a Dedekind domain, K its fraction field, L/K a finite separable field extension
of degree n and B the integral closure of A in L. Show that B is a Dedekind domain.

∗Exercise 9 (Classification of finitely generated modules over a Dedekind domain). Let
A be a Dedekind domain and M a finitely generated torsionfree A-module.

1. Show that there are ideal I1, . . . , In of A such that M ' I1 ⊕ · · · ⊕ In.

2. Show that I1⊕ · · · ⊕ In ' J1⊕ · · · ⊕ Jm for ideals I1, . . . , In, J1, . . . , Jm of A if and
only if n = m and if the products I1 · · · In and J1 · · · Jn represent the same class
in the class group Cl(A) of A.

3. Conclude that the isomorphism classes of nonzero finitely generated torsionfree
A-modules M correspond bijectively to pairs of a natural number n ∈ N and a
class [I] ∈ Cl(A) via M ' An ⊕ I.

4. Show more generally that every finitely generated A-module M is isomorphic to a
direct sum of the form

An ⊕ I ⊕A/pe11 ⊕ · · · ⊕A/p
er
r

for some n, r, e1, . . . , er ≥ 0, some ideal I ⊂ A and some non-zero prime ideals
p1, . . . , pr ⊂ A.

Hint: A proof can be found in [Jacobson, Basic Algebra 2, 10.6]. If A is a PID, then
this is an easy consquence of the elementary divisor theorem (what are the classes of
Cl(A) in this case?).

The starred exercises are not to hand in.


