Exercise 1 (Fundamental units).

Let $D \geq 2$ be a squarefree integer and let \mathcal{O}_K be the ring of integers of $K = \mathbb{Q}[\sqrt{D}]$. A fundamental unit of K is an element ϵ of \mathcal{O}_K^{\times} such that $\mathcal{O}_K^{\times} = \{\pm \epsilon^i\}_{i \in \mathbb{Z}}$.

- 1. Fix an embedding $K \hookrightarrow \mathbb{R}$. Show that each of the intervals $(-\infty, -1)$, (-1, 0), (0, 1) and $(1, \infty)$ contains precisely one fundamental unit of K.
- 2. Conclude that for a unit $u = a + b\sqrt{D} \in \mathcal{O}_K^{\times}$, we have u > 1 if and only if a, b > 0.
- 3. Let $u = a + b\sqrt{D} \in \mathcal{O}_K^{\times}$ be a unit larger than 1 and $u^n = c + d\sqrt{D}$ with $n \ge 1$. Show that $a \le c$ and $b \le d$.
- 4. Use this to determine fundamental units for $D \in \{2, 3, 5, 6, 7, 10\}$.

Exercise 2 (Pell equation).

Find all solutions $(a, b) \in \mathbb{Z}$ with $|a|, |b| \leq 200$ to the Pell equations $X^2 - 3Y^2 = 1$ and $X^2 - 5Y^2 = 1$.

Extra exercise: Show that the Pell equation $X^2 + DY^2 = 1$ has an integer solution (a, b) with b > 0 for every squarefree $D \ge 2$.

Exercise 3.

Let p be a prime number. Show that

- p ramifies in $\mathbb{Z}[i]$ if and only if p = 2;
- p splits in $\mathbb{Z}[i]$ if and only if $p \equiv 1 \pmod{4}$;
- p is inert in $\mathbb{Z}[i]$ if and only if $p \equiv 3 \pmod{4}$;

Hint: Use that $p = a^2 + b^2 = (a + bi)(a - bi)$ if and only if $p \equiv 1$ or 2 (mod 4).

Exercise 4.

- 1. Show that $\mathbb{Z}[\sqrt[3]{2}]$ is the ring of algebraic integers of $\mathbb{Q}(\sqrt[3]{2})$.
- 2. What is the conductor of $\mathbb{Z}[\sqrt[3]{2}]$ (w.r.t. \mathbb{Z})?
- 3. Determine the prime decompositions of the ideals 2B, 3B, 5B and 7B in $B = \mathbb{Z}[\sqrt[3]{2}]$.

Hint: Part 1 can be solved as follows. Let $\delta = \sqrt[3]{2}$. If $f = T^3 + c_2T^2 + c_1T + c_0$ is the minimal polynomial of an element $z = a + b\delta + c\delta^2 \in \mathbb{Q}(\delta)$ with $a, b, c \in \mathbb{Q}$, then $c_2 = 3a$, $c_1 = 3a^2 - 6bc$ and $c_0 = a^3 + 2b^3 + 4c^3 - 6abc$. Consider c_2, c_1, c_0 for $z, \delta z$ and $\delta^2 z$ to show that $c_2, c_1, c_0 \in \mathbb{Z}$ only if $a, b, c \in \mathbb{Z}$.

Exercise 5.

Let A be a Dedekind domain.

- 1. Show that given pairwise coprime ideals I_1, \ldots, I_n and elements $a_1, \ldots, a_n \in A$, then there is an element $b \in A$ such that $b \equiv a_i \pmod{I_i}$ for $i = 1, \ldots, n$. (*Hint:* Use the Chinese remainder theorem.)
- 2. Show that any powers of different nonzero prime ideals of I are coprime.
- 3. Conclude that given an ideal $I = \prod \mathfrak{p}_i^{e_i}$ of A and a nonzero $a \in I$ with $(a) = \prod \mathfrak{p}_i^{e'_i} \cdot \prod \mathfrak{q}_j^{f_j}$, there exists a $b \in I$ such that I = (a, b).

*Exercise 6.

Recall the proof of the main theorem of Galois theory.

*Exercise 7.

Recall the proofs of all basic facts about localizations of rings and modules.

*Exercise 8.

Let A be a Dedekind domain, K its fraction field, L/K a finite separable field extension of degree n and B the integral closure of A in L. Show that B is a Dedekind domain.

*Exercise 9 (Classification of finitely generated modules over a Dedekind domain). Let A be a Dedekind domain and M a finitely generated torsionfree A-module.

- 1. Show that there are ideal I_1, \ldots, I_n of A such that $M \simeq I_1 \oplus \cdots \oplus I_n$.
- 2. Show that $I_1 \oplus \cdots \oplus I_n \simeq J_1 \oplus \cdots \oplus J_m$ for ideals $I_1, \ldots, I_n, J_1, \ldots, J_m$ of A if and only if n = m and if the products $I_1 \cdots I_n$ and $J_1 \cdots J_n$ represent the same class in the class group Cl(A) of A.
- 3. Conclude that the isomorphism classes of nonzero finitely generated torsionfree A-modules M correspond bijectively to pairs of a natural number $n \in \mathbb{N}$ and a class $[I] \in Cl(A)$ via $M \simeq A^n \oplus I$.
- 4. Show more generally that every finitely generated A-module M is isomorphic to a direct sum of the form

$$A^n \oplus I \oplus A/\mathfrak{p}_1^{e_1} \oplus \cdots \oplus A/\mathfrak{p}_r^{e_r}$$

for some $n, r, e_1, \ldots, e_r \ge 0$, some ideal $I \subset A$ and some non-zero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r \subset A$.

Hint: A proof can be found in [Jacobson, Basic Algebra 2, 10.6]. If A is a PID, then this is an easy consquence of the elementary divisor theorem (what are the classes of Cl(A) in this case?).

The starred exercises are not to hand in.