to hand in at 23.1.2017 in the exercise class

Exercise 1.

Let K be a quadratic number field and \mathcal{O}_K its integers. Let $j : K \to K_{\mathbb{R}}$ be the embedding into the Minkowski space of K, and vol the canonical measure and vol_M the Minkowski measure. Calculate $\operatorname{vol}(\Gamma)$ and $\operatorname{vol}_M(\Gamma)$ for the lattice $\Gamma = j(\mathcal{O}_K)$.

Exercise 2.

Let V be a real vector space and Γ a subgroup of V.

- 1. Show that Γ is a discrete subgroup if and only if $\Gamma = \langle v_1, \ldots, v_m \rangle$ for vectors $v_1, \ldots, v_m \in V$ that are linearly independent over \mathbb{R} .
- 2. Show that Γ spans V over \mathbb{R} if and only if there is a bounded subset $M \subset V$ such that $V = \bigcup_{\gamma \in \Gamma} \gamma + M$. Show that if Γ is a lattice in V, then any fundamental mesh Φ satisfies $V = \coprod_{\gamma \in \Gamma} \gamma + \Phi$.

Exercise 3.

Let K be an algebraic number field of degree n with integers \mathcal{O}_K and discriminant d_K .

- 1. Show that there exists a primitive element $a \in \mathcal{O}_K$, i.e. $K = \mathbb{Q}[a]$.
- 2. Show that

$$d(1, a, \dots, a^{n-1}) = (\mathcal{O}_K : \mathbb{Z}[a])^2 \cdot d_K.$$

3. Conclude that $\mathcal{O}_K = \mathbb{Z}[a]$ if $d(1, a, \dots, a^{n-1})$ is squarefree.

Exercise 4.

Let K be a number field. Show that there is a unique \mathbb{C} -linear map $\varphi : K \otimes_{\mathbb{Q}} \mathbb{C} \to \prod_{\tau} \mathbb{C}$ with $\varphi(a \otimes 1) = (\tau(a))_{\tau}$ where $\tau : K \to \mathbb{C}$ ranges through all field embeddings, and that this map is an isomorphism of \mathbb{C} -vector spaces.

Hint: The linear independence of characters is a general fact (e.g. see [Lang: Algebra, VIII.4 Thm. 7]), which implies that the embeddings $\tau : K \to \mathbb{C}$ are linearly independent over \mathbb{C} .

Exercise 5.

Show that the class group of $\mathbb{Q}[\sqrt{D}]$ is trivial for $D \in \{-7, -3, -2, -1, 2, 3, 5, 13\}$. *Hint:* Use the Minkowski bound, cf. Exercise 8.

Extra exercises: Calculate the class group for some other quadratic number field. Find a cubic number field with trivial class group.

***Exercise 6.** What is the canonical volume of the ideal (1+i) of $\mathbb{Z}[i]$ inside the Minkowski space of $\mathbb{Q}[i]$? Is it equal to the Minkowski volume?

*Exercise 7.

Let V be an n-dimensional Euclidean space with scalar product $\langle -, - \rangle$. Let $\Phi \subset V$ be the parallelepiped spanned by the vectors $v_1, \ldots, v_n \in V$. Show that

$$\operatorname{vol}(\Phi)^2 = \left| \det \left((\langle v_i, v_j \rangle)_{i,j} \right) \right|.$$

This number is also called the *Gram determinant of* v_1, \ldots, v_n .

*Exercise 8 (Minkowski bound).

Let K be a number field of degree n with r real embeddings and s pairs of complex embeddings. Let \mathcal{O}_K be its integers, d_K its discriminant and $K_{\mathbb{R}}$ its Minkowski space.

1. Show that

$$X = \left\{ (z_{\tau}) \in K_{\mathbb{R}} \mid \sum_{\tau} |z_{\tau}| < t \right\}$$

is a convex symmetric set of (canonical) volume $2^r \pi^s t^n / n!$.

2. Show that every nonzero ideal I of \mathcal{O}_K contains a nonzero element a with

$$|N_{K/\mathbb{Q}}(a)| \leq M_K \cdot (\mathcal{O}_K : I)$$

where $M_K = n!/n^n (4/\pi)^s \sqrt{|d_K|}$ is the so-called Minkowski bound for K. Hint: Make use of the inequality $1/n \sum |z_\tau| \ge (\prod |z_\tau|)^{1/n}$.

- 3. Show that every ideal class $[I] \in Cl(\mathcal{O}_K)$ contains an integral ideal I_0 of norm $N(I) \leq M_K$.
- 4. Show that $M_K \leq (2/\pi)^s \sqrt{|d_K|}$, i.e. the Minkowski bound is better than the bound from the lecture.

*Exercise 9 (Elementary divisor theorem). Let A be a PID, M be a free module over A and $M' \subset M$ a finitely generated submodule. Then there exists a basis \mathcal{B} of M, $b_1, \ldots, b_n \in \mathcal{B}$ and non-zero elements $a_1, \ldots, a_n \in A$ such that

- 1. (a_1b_1, \ldots, a_nb_n) is a basis for M', and
- 2. $a_i | a_{i+1}$ for $i = 1, \ldots, n-1$.

The sequence of ideals $(a_n) \subset \ldots \subset (a_1)$ is uniquely determined by the previous conditions.

Hint: A proof can be found in [Lang, Algebra, III.7].

The starred exercises are not to hand in.