## Exercises for Algebraic Number Theory

List 3
to hand in at 23.1.2017 in the exercise class

## Exercise 1.

Let $K$ be a quadratic number field and $\mathcal{O}_{K}$ its integers. Let $j: K \rightarrow K_{\mathbb{R}}$ be the embedding into the Minkowski space of $K$, and vol the canonical measure and $\operatorname{vol}_{M}$ the Minkowski measure. Calculate $\operatorname{vol}(\Gamma)$ and $\operatorname{vol}_{M}(\Gamma)$ for the lattice $\Gamma=j\left(\mathcal{O}_{K}\right)$.

## Exercise 2.

Let $V$ be a real vector space and $\Gamma$ a subgroup of $V$.

1. Show that $\Gamma$ is a discrete subgroup if and only if $\Gamma=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ for vectors $v_{1}, \ldots, v_{m} \in V$ that are linearly independent over $\mathbb{R}$.
2. Show that $\Gamma$ spans $V$ over $\mathbb{R}$ if and only if there is a bounded subset $M \subset V$ such that $V=\bigcup_{\gamma \in \Gamma} \gamma+M$. Show that if $\Gamma$ is a lattice in $V$, then any fundamental mesh $\Phi$ satisfies $V=\coprod_{\gamma \in \Gamma} \gamma+\Phi$.

## Exercise 3.

Let $K$ be an algebraic number field of degree $n$ with integers $\mathcal{O}_{K}$ and discriminant $d_{K}$.

1. Show that there exists a primitive element $a \in \mathcal{O}_{K}$, i.e. $K=\mathbb{Q}[a]$.
2. Show that

$$
d\left(1, a, \ldots, a^{n-1}\right)=\left(\mathcal{O}_{K}: \mathbb{Z}[a]\right)^{2} \cdot d_{K}
$$

3. Conclude that $\mathcal{O}_{K}=\mathbb{Z}[a]$ if $d\left(1, a, \ldots, a^{n-1}\right)$ is squarefree.

## Exercise 4.

Let $K$ be a number field. Show that there is a unique $\mathbb{C}$-linear map $\varphi: K \otimes_{\mathbb{Q}} \mathbb{C} \rightarrow \prod_{\tau} \mathbb{C}$ with $\varphi(a \otimes 1)=(\tau(a))_{\tau}$ where $\tau: K \rightarrow \mathbb{C}$ ranges through all field embeddings, and that this map is an isomorphism of $\mathbb{C}$-vector spaces.

Hint: The linear independence of characters is a general fact (e.g. see [Lang: Algebra, VIII. 4 Thm. 7]), which implies that the embeddings $\tau: K \rightarrow \mathbb{C}$ are linearly independent over $\mathbb{C}$.

## Exercise 5.

Show that the class group of $\mathbb{Q}[\sqrt{D}]$ is trivial for $D \in\{-7,-3,-2,-1,2,3,5,13\}$.
Hint: Use the Minkowski bound, cf. Exercise 8.
Extra exercises: Calculate the class group for some other quadratic number field. Find a cubic number field with trivial class group.
*Exercise 6. What is the canonical volume of the ideal $(1+i)$ of $\mathbb{Z}[i]$ inside the Minkowski space of $\mathbb{Q}[i]$ ? Is it equal to the Minkowski volume?

## *Exercise 7.

Let $V$ be an $n$-dimensional Euclidean space with scalar product $\langle-,-\rangle$. Let $\Phi \subset V$ be the parallelepiped spanned by the vectors $v_{1}, \ldots, v_{n} \in V$. Show that

$$
\operatorname{vol}(\Phi)^{2}=\left|\operatorname{det}\left(\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}\right)\right|
$$

This number is also called the Gram determinant of $v_{1}, \ldots, v_{n}$.
*Exercise 8 (Minkowski bound).
Let $K$ be a number field of degree $n$ with $r$ real embeddings and $s$ pairs of complex embeddings. Let $\mathcal{O}_{K}$ be its integers, $d_{K}$ its discriminant and $K_{\mathbb{R}}$ its Minkowski space.

1. Show that

$$
X=\left\{\left(z_{\tau}\right) \in K_{\mathbb{R}}\left|\sum_{\tau}\right| z_{\tau} \mid<t\right\}
$$

is a convex symmetric set of (canonical) volume $2^{r} \pi^{s} t^{n} / n$ !.
2. Show that every nonzero ideal $I$ of $\mathcal{O}_{K}$ contains a nonzero element $a$ with

$$
\left|N_{K / \mathbb{Q}}(a)\right| \leq M_{K} \cdot\left(\mathcal{O}_{K}: I\right)
$$

where $M_{K}=n!/ n^{n}(4 / \pi)^{s} \sqrt{\left|d_{K}\right|}$ is the so-called Minkowski bound for $K$.
Hint: Make use of the inequality $1 / n \sum\left|z_{\tau}\right| \geq\left(\Pi\left|z_{\tau}\right|\right)^{1 / n}$.
3. Show that every ideal class $[I] \in \operatorname{Cl}\left(\mathcal{O}_{K}\right)$ contains an integral ideal $I_{0}$ of norm $N(I) \leq M_{K}$.
4. Show that $M_{K} \leq(2 / \pi)^{s} \sqrt{\left|d_{K}\right|}$, i.e. the Minkowski bound is better than the bound from the lecture.
${ }^{*}$ Exercise 9 (Elementary divisor theorem). Let $A$ be a PID, $M$ be a free module over $A$ and $M^{\prime} \subset M$ a finitely generated submodule. Then there exists a basis $\mathcal{B}$ of $M$, $b_{1}, \ldots, b_{n} \in \mathcal{B}$ and non-zero elements $a_{1}, \ldots, a_{n} \in A$ such that

1. $\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)$ is a basis for $M^{\prime}$, and
2. $a_{i} \mid a_{i+1}$ for $i=1, \ldots, n-1$.

The sequence of ideals $\left(a_{n}\right) \subset \ldots \subset\left(a_{1}\right)$ is uniquely determined by the previous conditions.

Hint: A proof can be found in [Lang, Algebra, III.7].

The starred exercises are not to hand in.

