Exercise 1.

Every unique factorization domain is integrally closed. Conclude that \mathbb{Z} is integrally closed in \mathbb{Q} .

Exercise 2.

Let L/K be a separable field extension of degree n with basis $(1, a, \ldots, a^{n-1})$ for some $a \in L$. Then $d(1, a, \ldots, a^{n-1}) = \prod_{i < j} (a_i - a_j)^2$.

Exercise 3. Let L be a number field and \mathcal{O}_L its integers.

- 1. Let M be a non-trivial finitely generated \mathcal{O}_L -submodule of L. Show that the discriminant $d(M) = d(b_1, \ldots, b_n)$ of M does not depend on the choice of a \mathbb{Z} -basis (b_1, \ldots, b_n) of M.
- 2. Let $M \subset M'$ be two non-trivial finitely generated \mathcal{O}_L -submodules of L. Show that the index (M': M) is finite and that $d(M) = (M': M)^2 d(M')$.

Exercise 4.

- 1. Show that every quadratic extension of \mathbb{Q} is of the form $\mathbb{Q}[\sqrt{D}]$ with $D \in \mathbb{Z}$.
- 2. Let $D \in \mathbb{Z}$ be squarefree and different from 0 and 1. Consider $L = \mathbb{Q}[\sqrt{D}]$ and its integers \mathcal{O}_L . Show that a basis of \mathcal{O}_L over \mathbb{Z} is given by

$$\begin{array}{ll} \{1,\sqrt{D}\} & \text{if } D \equiv 2 \text{ or } 3 \pmod{4}, \\ \{1,(1+\sqrt{D})/2\} & \text{if } D \equiv 1 \pmod{4}. \end{array}$$

3. Calculate the discriminant of L in either case.

Hint: Use the norm and trace to calculate the minimal polynomial of an element $a \in L$.

Exercise 5. Consider the ring of integers $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\}$ of $\mathbb{Q}[\sqrt{-5}]$.

- 1. Show that $N_{\mathbb{Z}[\sqrt{-5}]/\mathbb{Z}}(a+b\sqrt{-5}) = a^2 + 5b^2$.
- 2. Calculate all elements of $\mathbb{Z}[\sqrt{-5}]$ with norm in $\{0, \ldots, 9\}$. Conclude that 2, 3, $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are irreduzible in $\mathbb{Z}[\sqrt{-5}]$.
- 3. Find all factorizations of 6 into irreduzible elements in $\mathbb{Z}[\sqrt{-5}]$. Is $\mathbb{Z}[\sqrt{-5}]$ a unique factorization domain? Which of 2, 3, $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are prime in $\mathbb{Z}[\sqrt{-5}]$?

*Exercise 6.

Which of the following numbers are algebraic integers?

$$\sqrt{2}, \quad \frac{1}{2}, \quad \sqrt{\frac{1}{2}}, \quad \frac{1+\sqrt{5}}{2}, \quad \frac{3+2\sqrt{6}}{1-\sqrt{6}}.$$

*Exercise 7. Verify all properties of norm and trace as claimed in Proposition 2 of the lecture. To keep the proofs simple, you may assume that all field extensions are separable.

*Exercise 8 (Chinese Remainder theorem). Let A be a ring, I_1, \ldots, I_n be ideals of R with $I_i + I_j = A$ for $i \neq j$ and $J = \bigcap_{i=1}^n I_i$. Then there is a canonical isomorphism of rings

$$A/J \xrightarrow{\sim} \bigoplus_{i=1}^n A/I_i.$$

*Exercise 9. Let $f : A \to B$ be a ring homomorphism and I an ideal of B. Show that $f^{-1}(I)$ is an ideal of A, and show that if I is a prime ideal, then so is $f^{-1}(I)$. Is the converse statement true?

***Exercise 10.** Let A be a ring. Show that the A-submodules of A are precisely the ideals of A.

*Exercise 11. Let A be a ring, $a, b \in A$ and $I, J \subset A$ ideals.

- 1. Show that $a \mid b$ if and only if $(a) \mid (b)$.
- 2. Show that $I \cap J \mid I \cdot J$. Is the converse true?
- 3. Show that $I \cap J$ is the least common multiple of I and J.
- 4. Show that I + J is the greatest common divisor of I and J.
- 5. Show that (a) is a nonzero prime ideal if and only if a is a prime element.
- 6. Show that I is a prime ideal if and only if for all ideal J_1, \ldots, J_n of A such that $I \mid J_1 \cdots J_n$, there is an $i \in \{1, \ldots, n\}$ such that $I \mid J_i$.

The starred exercises are not to hand in.