Exercise 1.

Show the following properties of the norm $N : \mathbb{Z}[i] \to \mathbb{Z}$ for all $z, z' \in \mathbb{Z}[i]$ and $x \in \mathbb{Z}$.

- 1. $N(z) \ge 0;$
- 2. N(zz') = N(z)N(z');
- 3. $N(x) = x^2;$
- 4. N(z) = 1 if and only if $z \in \mathbb{Z}[i]^{\times}$.

What is $\mathbb{Z}[i]^{\times}$?

Exercise 2.

Show that $\mathbb{Z}[i]$ equals the set of all $z \in \mathbb{Q}[i]$ for which there are $a, b \in \mathbb{Z}$ such that $z^2 + az + b = 0$. How is b related to the norm of z? Can you express a as a term in z?

Exercise 3.

- 1. Show that $\mathbb{Z}[\sqrt{2}]$ is a unique factorization domain.
- 2. Show that $1 + \sqrt{-5}$ is irreducible, but not prime, in $\mathbb{Z}[\sqrt{-5}]$. Is $\mathbb{Z}[\sqrt{-5}]$ a unique factorization domain?

Exercise 4.

Prove Euclid's theorem about Pythagorean triples: for every solution $(a, b, c) \in \mathbb{Z}_{>0}^3$ of $x^2 + y^2 = z^2$, there are unique $k, m, n \in \mathbb{Z}_{>0}$ with (m, n) = 1 such that $a = k \cdot (n^2 - m^2)$, $b = k \cdot 2nm$ and $c = k \cdot (n^2 + m^2)$ (up to a permutation of a and b).

*Exercise 5.¹

- 1. Show that every prime element of an integral domain is indecomplosable.
- 2. Show that in a unique factorization domain, every irreducible element is prime.
- 3. Show that every Euclidean ring is a principle ideal domain.
- 4. Show that every principle ideal domain is a unique factorization domain.

¹The starred exercises are not to hand in. But it is advised to work on these exercises, and possibly to discuss them in the exercise class.