Exercises for Algebra 1
List 9
To hand in at 25.5 . in the exercise class

Exercise 1. Let M, N, N_{i} and P be A-modules where $i \in I$ for some index set I. Verify the following properties of the tensor product:
(1) $M \otimes_{A} A \simeq M$;
(2) $M \otimes_{A} N \simeq N \otimes_{A} M$;
(3) $\left(M \otimes_{A} N\right) \otimes_{A} P \simeq M \otimes_{A}\left(N \otimes_{A} P\right)$;
(4) $M \otimes_{A}\left(\bigoplus_{i \in I} N_{i}\right) \simeq \bigoplus_{i \in I}\left(M \otimes_{A} N_{i}\right)$.

Exercise 2. Let k be a field, $A=k[T]$ and $M=N=k^{2}$ the A-modules from Exercise 2 of List 8 . Let $P=k$.

1. Show that the map $A \times P \rightarrow P$ with $\left(\sum a_{i} T^{i}\right) \cdot(m)=\sum a_{i} \cdot m$ defines an A-module structure for P.
2. Show that the inclusion $a \mapsto(a, 0)$ into the first coordinate defines injective A linear maps $i: P \rightarrow M$ and $j: P \rightarrow N$.
3. Show that there are short exact sequences of the form

$$
0 \longrightarrow P \xrightarrow{i} M \xrightarrow{p} P \longrightarrow 0 \quad \text { and } \quad 0 \longrightarrow P \xrightarrow{j} N \xrightarrow{q} P \longrightarrow 0
$$

for some A-linear maps p and q.
4. Which of these sequences are split?

Exercise 3. Let $0 \rightarrow V_{1} \rightarrow \cdots \rightarrow V_{n} \rightarrow 0$ be an exact sequence of k-vector spaces. Show that $\sum(-1)^{k} \operatorname{dim}_{k} V_{k}=0$.

Exercise 4.

Let $f: M \rightarrow N$ be an A-linear homomorphism and consider its factorization $f=i \circ p$ into the surjection $p: M \rightarrow \operatorname{im} f$ and the inclusion $i: \operatorname{im} f \rightarrow N$.

1. Show that $i: \operatorname{im} f \rightarrow N$ is the kernel of the cokernel $N \rightarrow \operatorname{coker} f$ of f
2. Show that $p: M \rightarrow \operatorname{im} f$ is the cokernel of the kernel ker $f \rightarrow M$ of f.
3. Show that $\operatorname{im} f$ together with $p: M \rightarrow \operatorname{im} f$ and $i: \operatorname{im} f \rightarrow N$ is a categorical image of f (see Exercise 4 on List 7).
4. Given an exact sequence

$$
\cdots \xrightarrow{f_{i-1}} M_{i-1} \xrightarrow{f_{i}} M_{i} \xrightarrow{f_{i+1}} M_{i+1} \xrightarrow{f_{i+2}} \cdots
$$

with $i \in I$, show that we obtain for every $i \in I$ a short exact sequence

$$
0 \longrightarrow \operatorname{im} f_{i} \longrightarrow M_{i} \longrightarrow \operatorname{im} f_{i+1} \longrightarrow 0
$$

and that these sequences fit together to a commutative diagram

Exercise 5 (Bonus). Prove the short 5-lemma: given a commutative diagram

with exact rows, then

1. f_{M} is a monomorphism if f_{N} and f_{Q} are monomorphisms,
2. f_{M} is an epimorphism if f_{N} and f_{Q} are epimorphisms, and
3. f_{M} is an isomorphism if f_{N} and f_{Q} are isomorphisms.
