Exercises for Algebra 1	Instituto Nacional de Mat	emática Pura e Aplicada
List 9		Oliver Lorscheid
To hand in at 25.5. in the exercise of	lass Es	teban Arreaga (monitor)

Exercise 1. Let M, N, N_i and P be A-modules where $i \in I$ for some index set I. Verify the following properties of the tensor product:

(1) $M \otimes_A A \simeq M;$ (2) $M \otimes_A N \simeq N \otimes_A M;$ (3) $(M \otimes_A N) \otimes_A P \simeq M \otimes_A (N \otimes_A P);$ (4) $M \otimes_A (\bigoplus_{i \in I} N_i) \simeq \bigoplus_{i \in I} (M \otimes_A N_i).$

Exercise 2. Let k be a field, A = k[T] and $M = N = k^2$ the A-modules from Exercise 2 of List 8. Let P = k.

- 1. Show that the map $A \times P \to P$ with $(\sum a_i T^i).(m) = \sum a_i.m$ defines an A-module structure for P.
- 2. Show that the inclusion $a \mapsto (a, 0)$ into the first coordinate defines injective A-linear maps $i: P \to M$ and $j: P \to N$.
- 3. Show that there are short exact sequences of the form

 $0 \longrightarrow P \xrightarrow{i} M \xrightarrow{p} P \longrightarrow 0 \qquad \text{and} \qquad 0 \longrightarrow P \xrightarrow{j} N \xrightarrow{q} P \longrightarrow 0$

for some A-linear maps p and q.

4. Which of these sequences are split?

Exercise 3. Let $0 \to V_1 \to \cdots \to V_n \to 0$ be an exact sequence of k-vector spaces. Show that $\sum (-1)^k \dim_k V_k = 0$.

Exercise 4.

Let $f: M \to N$ be an A-linear homomorphism and consider its factorization $f = i \circ p$ into the surjection $p: M \to \inf f$ and the inclusion $i: \inf f \to N$.

- 1. Show that $i: \operatorname{im} f \to N$ is the kernel of the cokernel $N \to \operatorname{coker} f$ of f
- 2. Show that $p: M \to \operatorname{im} f$ is the cokernel of the kernel ker $f \to M$ of f.
- 3. Show that $\inf f$ together with $p: M \to \inf f$ and $i: \inf f \to N$ is a categorical image of f (see Exercise 4 on List 7).
- 4. Given an exact sequence

$$\cdots \xrightarrow{f_{i-1}} M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \xrightarrow{f_{i+2}} \cdots$$

with $i \in I$, show that we obtain for every $i \in I$ a short exact sequence

 $0 \longrightarrow \operatorname{im} f_i \longrightarrow M_i \longrightarrow \operatorname{im} f_{i+1} \longrightarrow 0,$

and that these sequences fit together to a commutative diagram

Exercise 5 (Bonus). Prove the *short 5-lemma*: given a commutative diagram

$$\begin{array}{c|c} 0 \longrightarrow N_1 \xrightarrow{i_1} M_1 \xrightarrow{p_1} Q_1 \longrightarrow 0 \\ f_N & f_M & f_Q \\ 0 \longrightarrow N_2 \xrightarrow{f_Q} M_2 \xrightarrow{p_Q} Q_2 \longrightarrow 0 \end{array}$$

with exact rows, then

- 1. f_M is a monomorphism if f_N and f_Q are monomorphisms,
- 2. f_M is an epimorphism if f_N and f_Q are epimorphisms, and
- 3. f_M is an isomorphism if f_N and f_Q are isomorphisms.