Exercises for Algebra 1Instituto Nacional de Matemática Pura e AplicadaList 7Oliver LorscheidTo hand in at 4.5. in the exercise classEsteban Arreaga (monitor)

Exercise 1.

Let K be a field.

- 1. Show that in the categories Ab, K Vect and Ring, a morphism is an isomorphism if and only if it is a bijective map.
- 2. Show that in the categories Ab, K-Vect and Ring, a morphism is a monomorphism if and only if it is an injective map.
- 3. Show that in the categories Ab and K Vect, a morphism is an epimorphism if and only if it is a surjective map.
- 4. Show that there are ring homomorphisms $\alpha : A \to B$ that are monomorphisms and epimorphisms, but not isomorphisms in the category Ring.

Exercise 2.

- 1. Let $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ be a functor and $\alpha : A \to B$ an isomorphism in \mathcal{C} . Show that $\mathcal{F}(\alpha)$ is an isomorphism in \mathcal{D} .
- 2. Give an example of a functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and an epimorphism α in \mathcal{C} such that $\mathcal{F}(\alpha)$ is not an epimorphism.
- 3. Give an example of a functor $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and a monomorphism α in \mathcal{C} such that $\mathcal{F}(\alpha)$ is not a monomorphism.

Exercise 3.

Let C be a category and $\{A_i\}_{i \in I}$ a family of objects in C. Assume that C has a product $\prod_{i \in I} A_i$ and a coproduct $\coprod_{i \in I} A_i$. Let B be another object of C.

- 1. Show that there is a bijection $\operatorname{Hom}_{\mathcal{C}}\left(B, \prod_{i \in I} A_i\right) \longrightarrow \prod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(B, A_i).$
- 2. Show that there is a bijection $\operatorname{Hom}_{\mathcal{C}}\left(\coprod_{i\in I}A_i, B\right) \longrightarrow \prod_{i\in I}\operatorname{Hom}_{\mathcal{C}}(A_i, B).$

Exercise 4.

Let \mathcal{C} be a category and $\alpha : A \to B$ a morphism in \mathcal{C} . A (categorical) image of α is an object $\operatorname{im}(\alpha)$ in \mathcal{C} together with a morphism $\pi : A \to \operatorname{im}(\alpha)$ and a monomorphism $\iota : \operatorname{im}(\alpha) \to B$ such that $\alpha = \iota \circ \pi$ that satisfy the following universal property: for every object C, morphism $\pi' : A \to C$ and monomorphism $\iota' : C \to B$ such that $\alpha = \iota' \circ \pi'$ there is a unique morphism $\beta : \operatorname{im}(\alpha) \to C$ such that $\pi' = \beta \circ \pi$ and $\iota = \iota' \circ \beta$.

- 1. Draw a diagram taking all the above objects and morphisms into consideration.
- 2. Assume that the image $\operatorname{im}(\alpha)$ of α exits. Show that if C together with $\pi' : A \to C$ and $\iota' : C \to B$ is an image of α , then there is a unique isomorphism $\beta : \operatorname{im}(\alpha) \to C$ such that $\pi' = \beta \circ \pi$ and $\iota = \iota' \circ \beta$.
- 3. Let $\alpha : A \to B$ be a morphism in Set. Consider the set

 $\operatorname{im}(\alpha) = \{ b \in B \mid b = \alpha(a) \text{ for some } a \in A \},\$

and the maps $\pi : A \to im(\alpha)$ with $\pi(a) = \alpha(a)$ and $\iota : im(\alpha) \to B$ with $\iota(b) = b$. Show that $im(\alpha)$ together with π and ι is a categorical image of α in Set.

4. Show that the analogous statements to part 3 hold for Ab, K – Vect and Ring.

Exercise 5 (Bonus).

- 1. Look up the definition of a topological space and of a continuous map.
- 2. Show that Top has initial and terminal objects as well as products and coproducts.

Recall from Exercise 5 from List 4 the definition of SpecA as the set of all prime ideals \mathfrak{p} of A together with the topology generated by the principal open subsets U_a where a varies through all elements of A. For a ring homomorphism $f : A \to B$, we define $f^* = \operatorname{Spec} f$ as the map that sends a prime ideal \mathfrak{p} of $\operatorname{Spec} B$ to $f^*(\mathfrak{p}) = f^{-1}(\mathfrak{p})$.

- 3. Show that this defines a contravariant functor Spec : Ring \rightarrow Top.
- 4. Show that the spectrum of the product of a finite number of rings is isomorphic to the coproduct of their spectra.