Exercises for Algebra 1
List 6
Not to hand in

Instituto Nacional de Matemática Pura e Aplicada
Oliver Lorscheid
Esteban Arreaga (monitor)

Exercise 1.

1. Let $f \in \mathbb{R}[T]$ be a polynomial without a root in \mathbb{R}. Show that f has even degree.
2. Show that $T^{5}+4 T+14$ is without a root in \mathbb{Q}, though it has odd degree.

Exercise 2.

Let A be a unique factorization domain and $K=\operatorname{Frac} A$. Let $f=\sum_{i=0}^{n} a_{i} T^{i}$ be a polynomial of degree n in $A[T]$ and $a \in K$ a root of f. Write $a=\frac{b}{c}$ such that 1 is a greatest common divisor of $b, c \in A$. Show that b is a divisor of a_{0} and c is a divisor of a_{n}. In particular, if $a_{n}=1$, then $a \in A$ and a is a divisor of a_{0}.

Exercise 3.

Show that the following polynomials are irreducible in $\mathbb{Q}[T]$.

- $T^{2}+1 ;$
- $2 T^{4}-18 T-12$;
- $T^{3}+T^{2}+1 ;$
- $T^{3}-13 T+5 ;$
- $T^{5}+3 T^{3}+6 T^{2}+1 ;$
- $T^{12}-2$.

Which of them are irreducible in $\mathbb{Z}[T]$? Which of them are irreducible in $\mathbb{Z}[i][T]$?

Exercise 4.

For which $a \geq 0$ is $T^{4}+a T^{2}+1$ irreducible in $\mathbb{Z}[T]$?

Exercise 5.

Let p be a prime number. Show that $T^{p-1}+\cdots+T+1$ is irreducible in $\mathbb{Z}[T]$.
Hint: Show that $f(T+1)$ is irreducible and conclude that $f=f(T)$ is irreducible.

Exercise 6.

1. Find a greatest common divisor of $T^{4}+T^{3}+2 T^{2}+T+1$ and $T^{3}+4 T^{2}+4 T+3$ in $\mathbb{Q}[T]$.
2. Find a greatest common divisor of $4 T^{5}+7 T^{3}+2 T^{2}+1$ and $3 T^{3}+T+1$ in $\mathbb{Q}[T]$.

Exercise 7.

Let $a+b i \in \mathbb{Z}[i]$.

1. Show that $(a+b i)^{-1}=\frac{a-b i}{a^{2}+b^{2}}$, as an element of $\mathbb{Q}[i]=\operatorname{Frac} \mathbb{Z}[i]$.
2. Find a greatest common divisor of $3+2 i$ and $2-i$.
3. Find a greatest common divisor of $8+9 i$ and $-1+7 i$ in $\mathbb{Z}[i]$.

Exercise 8.

Which of the following rings are integral domains, unique factorization domains, principal ideal domains, Euclidean rings, fields or local rings?

1. $\mathbb{Z}[i]$;
2. $\mathbb{Z}[\sqrt{-5}]$;
3. $\mathbb{Z}_{(2)}=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\, a, b \in \mathbb{Z}\right.$ and b odd $\} ;$
4. $\mathbb{R}[T] /\left(T^{2}+1\right)$;
5. $\mathbb{C}[T] /\left(T^{2}+1\right)$;
6. $S^{-1} \mathbb{C}[T]$ for $S=\left\{\sum a_{i} T^{i} \in \mathbb{C}[T] \mid a_{0} \neq 0\right\}$;
7. $\mathbb{C}\left[T_{1}, T_{2}, T_{3}, T_{4}\right] /\left(T_{1} T_{2}-T_{3} T_{4}\right)$.

Exercise 9.

Show that $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C}. Show that $\mathbb{Z}[\sqrt{2}]$ is a Euclidean ring and that it is isomorphic to $\mathbb{Z}[T] /\left(T^{2}-2\right)$.

Exercise 10.

Give three examples of

1. an integral domain that is not a unique factorization domain;
2. a unique factorization domain that is not a principal ideal ring;
3. a local principal domain that is not a field;
4. a local ring that is not an integral domain.

Exercise 11.

Let $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ be the field with two elements 0 and 1 .

1. Show that $f=T^{2}+T+1$ is an irreducible polynomial in $\mathbb{F}_{2}[T]$.
2. Show that $\mathbb{F}_{4}=\mathbb{F}_{2}[T] /(f)$ is a field with four elements.
3. Show that \mathbb{F}_{4}^{\times}is a cyclic group with 3 elements.
4. Show that $T^{4}-T=\prod_{a \in \mathbb{F}_{4}}(T-a)$ (as a polynomial in $\mathbb{F}_{4}[T]$).
5. Find a factorization of $T^{4}-T$ in $\mathbb{F}_{2}[T]$.

Remark: The polynomial f is called the third cyclotomic polynomial.

Exercise 12.

Let A be a ring.

1. If ideals I and J are coprime then, also I^{m} and J^{n} are coprime for all $m, n \geq 1$.
2. Given pairwise coprime ideals I_{i} and elements a_{i} for $i=1, \ldots, n$, there exits an $x \in A$ such that $x-a_{i} \in I_{i}$.

Exercise 13.

Let A be a ring and let $n \mathbb{Z}$ be the kernel of the unique ring homomorphism $\mathbb{Z} \rightarrow A$ where $n \geq 0$. The number char $A=n$ is called the characteristic of A.

1. Show that if n is positive, then n is the smallest positive integer such that

$$
n \cdot 1=\underbrace{1+\cdots+1}_{n-\text { times }}=0
$$

If $n=0$, then $k \cdot 1 \neq 0$ for any $k \geq 0$.
2. Show that n is zero or a prime number if A is an integral domain.
3. Let L / K be a field extension. Show that K and L have the same characteristic.
4. Let K be a field of characteristic 0 . Show that there is a unique ring homomorphism $\mathbb{Q} \rightarrow K$.
5. Let p be a prime number and $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ the field with p elements. Let K be a field of characteristic p. Show that there is a unique ring homomorphism $\mathbb{F}_{p} \rightarrow K$.
6. Give an example of a ring homomorphism $A \rightarrow B$ where A and B have different characteristics.

Remark: The image of the unique homomorphism $\mathbb{Q} \rightarrow K$ (if char $K=0$) or $\mathbb{F}_{p} \rightarrow K$ (if char $K=p>0$) is called the prime field of K.

Exercise 14.

Let $f: A \rightarrow B$ be a surjective ring homomorphism and A a local ring. Show that B is also a local ring.

Exercise 15.

Let A be a ring. Show that the set of all zero divisors of A is a union of ideals.
Hint: The kernel I_{a} of the multiplications map $m_{a}: A \rightarrow A$ by a consists of zero divisors if $a \neq 0$.

Exercise 16.

Prove the following stronger version of the statement of the previous exercise: the set of all zero divisors of a ring A is a union of prime ideals. This can be done along the following lines.

1. Let I_{a} be the kernel of the multiplication map $m_{a}: A \rightarrow A$. Show that $I_{0}=A$ and that all elements of I_{a} are zero divisors if $a \neq 0$.
2. Let $\mathcal{S}=\left\{I_{a} \mid a \in A-\{0\}\right\}$, which is partially ordered by inclusion. Show that for every $I_{a} \in \mathcal{S}$, there is a maximal element I_{b} in \mathcal{S} containing I_{a}.
3. Show that the set of zero divisors is the union of all maximal elements I_{a} of \mathcal{S}.
4. Show that $I_{a} \subset I_{a b}$ for any $a, b \in A$.
5. Show that every maximal element I_{a} in \mathcal{S} is a prime ideal.
