Exercise 1.

Let A be a ring and S a multiplicative subset. Show the following assertions.

- 1. The localization map $A \to S^{-1}A$ is injective if and only if for every $a \in S$, the multiplication $m_a : A \to A$ by a is an injective map.
- 2. If A is an integral domain, a unique factorization domain, a principal ideal domain, an Euclidean ring or a field and $0 \notin S$, then $S^{-1}A$ is so, too.
- 3. Find an example of a local ring A and a multiplicative subset S with $0 \notin S$ such that $S^{-1}A$ is not local.

Exercise 2.

Let A be a ring.

- 1. Show that $A[T_1, T_2] \simeq (A[T_1])[T_2].$
- 2. Let $f \in A[T]$ be nonzero. Show that $A[T][f^{-1}] \simeq A[T,T']/(fT'-1)$.

Exercise 3.

Let K be a field and $f \in K[T]$ a polynomial.

- 1. Show for $\deg f = 2$ and $\deg f = 3$ that f is irreducible in K[T] if and only if f does not have a root in K.
- 2. Find a field K and a polynomial $f \in K[T]$ of degree 4 that is not irreducible and does not have a root in K.
- 3. If f is irreducible of degree n, then L = K[T]/(f) is $\dim_K L = n$.
- 4. Show that there exists a field extension L/K such that f factorizes in L[T] as

$$f = u \prod_{i=1}^{n} (T - a_i)$$

with $u, a_1, \ldots, a_n \in L$.

Exercise 4.

Let G be an abelian group with n elements. We define the exponent of G as the smallest positive integer m such that $g^m = e$ for all $g \in G$.

- 1. Show that G is cyclic if and only if its exponent is n.
- Let K be a field and U a finite subgroup of order n of the multiplicative group K[×] of K. Show that U is cyclic.
 Hint: If m is the exponent of U, then every element of U is a zero of T^m − 1.

Exercise 5 (Bonus exercise).

- 1. Show that all irreducible polynomials in $\mathbb{R}[T]$ are of degree 1 or 2.
- 2. Define two complex numbers z and z' as equivalent if z' = z or $z' = \overline{z}$, the complex conjugate of z. Denote the corresponding equivalence relation by \sim and the class of z in the quotient set \mathbb{C}/\sim by [z]. Show that the map

is a bijection.

3. Make a drawing of $\operatorname{Spec}\mathbb{R}[T]$ and of the map $f^* : \operatorname{Spec}\mathbb{C}[T] \to \operatorname{Spec}\mathbb{R}[T]$ that is induced by the inclusion $f : \mathbb{R}[T] \to \mathbb{C}[T]$.