Exercises for Algebra 1	Instituto	Nacional de	Matemática	Pura e	Aplicada
List 4				Oliver	Lorscheid
To hand in at 13.4. in the exercise of	class		Esteban Ar	rreaga	(monitor)

Exercise 1.

Let A be an integral domain and (a) a non-zero principal ideal of A. A factorization of (a) into principal prime ideals is an equality of the form $(a) = \prod_{i=1}^{n} (p_i)$ where (p_i) are principal prime ideals of A.

- 1. Show that a factorization in principal prime ideals is unique, i.e. if $(a) = \prod_{i=1}^{n} (p_i)$ and $(a) = \prod_{j=1}^{m} (q_j)$ are two such factorizations, then there exists a bijection σ : $\{1, \ldots, n\} \to \{1, \ldots, m\}$ such that $(p_i) = (q_{\sigma(i)})$ for all $i = 1, \ldots, n$.
- 2. Show that A is a unique factorization domain if and only if every principal ideal of A has a factorization into principal prime ideals.

Exercise 2.

Let A be a unique factorization domain.

- 1. Show that every prime ideal of A is generated by a set of prime elements.
- 2. Find an example of a unique factorization domain A and prime elements p_1, \ldots, p_n of A such that $I = (p_1, \ldots, p_n)$ is **not** a prime ideal.
- 3. Show that the ideal $I = (2, 1 + \sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$ is prime and that it does not contain any prime element.

Exercise 3.

Let A be a ring and $S \subset A$ a multiplicative subset.

1. Show that

$$\frac{s}{r} \cdot \frac{r}{s} = \frac{1}{1}, \qquad \frac{ta}{ts} = \frac{a}{s}, \qquad \text{and} \qquad \frac{a}{s} + \frac{b}{s} = \frac{a+b}{s}$$

for all $a, b \in A$ and $r, s, t \in S$.

- 2. Show that $\frac{a}{s} = \frac{a'}{s'}$ if and only if sa' = s'a, in case that A is an integral domain.
- 3. Show that $S^{-1}A = \{0\}$ if $0 \in S$.
- 4. Show that $\iota_S: A \to S^{-1}A$ is injective if A is an integral domain and $0 \notin S$.
- 5. Let $A = A_1 \times A_2$ and h = (1, 0). Show that the association $\frac{(a,b)}{h^i} \mapsto (a,0)$ defines a ring isomorphism $A[h^{-1}] \simeq A_1$.

Exercise 4.

Let A be a non-zero ring, in which every proper ideal is prime. Show that A is a field.

Exercise 5 (Bonus exercise).

Let A be a ring. The spectrum of A is the set SpecA of all prime ideals of A. A principal open subset of SpecA is a subset of the form

$$U_a = U_{A,a} = \left\{ \mathfrak{p} \in \operatorname{Spec} A \, \middle| \, a \notin \mathfrak{p} \right\}$$

with $a \in A$.

- 1. Show that $U_0 = \emptyset$, $U_1 = \text{Spec}A$ and $U_a \cap U_b = U_{ab}$ for all $a, b \in A$. **Remark:** This shows that the principal open subsets of SpecA form a basis for a topology on SpecA, which is called the *Zariski topology*.
- 2. Let $f : A \to B$ be a ring homomorphism. By Exercise 2 of List 2, the association $\mathfrak{p} \mapsto f^{-1}(\mathfrak{p})$ defines a map $\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$. Show that $\varphi^{-1}(U_{A,a}) = U_{B,f(a)}$ for every $a \in A$. **Remark:** This shows that the map $\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$ is a continuous map.
- 3. Let $h \in A$ be a multiplicative subset and $f : A \to A[h^{-1}]$ the localization map. Show that $\varphi : \operatorname{Spec} A[h^{-1}] \to \operatorname{Spec} A$ is injective and satisfies $\varphi(U_{A[h^{-1}],\frac{a}{s}}) = U_{A,ah}$ for every $a \in A$ and $s = h^i$ with $i \ge 0$. **Remark:** This shows that $\varphi : \operatorname{Spec}(A[h^{-1}]) \to \operatorname{Spec} A$ is an open topological embedding with image U_h .
- 4. Let $V_{A,a} = \{\mathfrak{p} \in \operatorname{Spec} A | a \in \mathfrak{p}\}$ be the complement of $U_{A,a}$ in SpecA. Let I be an ideal of $A, f : A \to A/I$ the canonical projection and $V(I) = \bigcap_{a \in I} V_{A,a}$. Show that $\varphi : \operatorname{Spec}(A/I) \to \operatorname{Spec} A$ is injective and satisfies $\varphi(V_{A/I,\overline{a}}) = V_{A,a} \cap V(I)$ for every $a \in A$ with residue class \overline{a} in A/I.

Remark: This shows that φ : Spec $(A/I) \to$ SpecA is a closed topological embedding with image V(I).