Exercises for Algebra 1

To hand in at 6.4. in the exercise class

Exercise 1.

Let e_{1}, \ldots, e_{n} be pairwise coprime positive integers. Show that the underlying additive group of $\mathbb{Z} / e_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / e_{n} \mathbb{Z}$ is a cyclic group.

Exercise 2.

Let A be an integral domain and $a, b, c, d, e \in A$.

1. Show that if d is a greatest common divisor of b and c and e is a greatest common divisor of $a b$ and $a c$, then $(e)=(a d)$. Conclude that $\operatorname{gcd}(a b, a c)=(a) \cdot \operatorname{gcd}(b, c)$.
2. If A is a principal ideal domain, then d is a greatest common divisor of a and b if and only if $(a, b)=(d)$. Conclude that every two elements of a principal ideal domain have a greatest common divisor.
3. Find an integral domain A with elements $a, b, d \in A$ such that d is a greatest common divisor of a and b, but $(a, b) \neq(d)$.

Exercise 3.

Let $\mathbb{Z}[\sqrt{-5}]$ be the set of complex numbers of the form $z=a+b \sqrt{-5}$ with $a, b \in \mathbb{Z}$ and $\sqrt{-5}=i \sqrt{5}$.

1. Show that $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C}.
2. Show that the association $a+b \sqrt{-5} \mapsto a^{2}+5 b^{2}$ defines a map $N: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}$ with $N\left(z z^{\prime}\right)=N(z) N\left(z^{\prime}\right)$ and $N(1)=1$.
Remark: $N(z)$ is the square of the usual absolute value of the comlex number z.
3. Conclude that $z \in \mathbb{Z}[\sqrt{-5}]^{\times}$if and only if $N(z) \in \mathbb{Z}^{\times}$. Determine $\mathbb{Z}[\sqrt{-5}]^{\times}$.
4. Show that $2,3,(1+\sqrt{-5})$ and $(1-\sqrt{-5})$ are irreducible, but not prime.
5. Show that 6 and $2+2 \sqrt{-5}$ do not have a greatest common divisor.

Exercise 4.

1. Determine all units, prime elements and irreducible elements of $\mathbb{Z} / 6 \mathbb{Z}$.
2. Let $\mathbb{R}\left[T_{1}, T_{2}\right]=\left(\mathbb{R}\left[T_{1}\right]\right)\left[T_{2}\right]$ be the polynomial ring over \mathbb{R} in T_{1} and T_{2} and I the ideal generated by $T_{1}^{2}+T_{2}^{2}$. Is the class $\bar{T}_{1}=T_{1}+I$ a prime element in the quotient ring $\mathbb{R}\left[T_{1}, T_{2}\right] / I ?$ Is \bar{T}_{1} irreducible?

Exercise 5 (Bonus exercise).
Prove the fundamental theorem of algebra: given a polynomial $f \in \mathbb{C}[T]$ of positive degree, then there exists a $z \in \mathbb{C}$ such that $f(z)=0$.

