Exercises for Algebra 1Instituto Nacional de Matemática Pura e AplicadaList 3Oliver LorscheidTo hand in at 6.4. in the exercise classEsteban Arreaga (monitor)

Exercise 1.

Let e_1, \ldots, e_n be pairwise coprime positive integers. Show that the underlying additive group of $\mathbb{Z}/e_1\mathbb{Z} \times \cdots \times \mathbb{Z}/e_n\mathbb{Z}$ is a cyclic group.

Exercise 2.

Let A be an integral domain and $a, b, c, d, e \in A$.

- 1. Show that if d is a greatest common divisor of b and c and e is a greatest common divisor of ab and ac, then (e) = (ad). Conclude that $gcd(ab, ac) = (a) \cdot gcd(b, c)$.
- 2. If A is a principal ideal domain, then d is a greatest common divisor of a and b if and only if (a, b) = (d). Conclude that every two elements of a principal ideal domain have a greatest common divisor.
- 3. Find an integral domain A with elements $a, b, d \in A$ such that d is a greatest common divisor of a and b, but $(a, b) \neq (d)$.

Exercise 3.

Let $\mathbb{Z}[\sqrt{-5}]$ be the set of complex numbers of the form $z = a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$ and $\sqrt{-5} = i\sqrt{5}$.

- 1. Show that $\mathbb{Z}[\sqrt{-5}]$ is a subring of \mathbb{C} .
- 2. Show that the association $a + b\sqrt{-5} \mapsto a^2 + 5b^2$ defines a map $N : \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}$ with N(zz') = N(z)N(z') and N(1) = 1. **Remark:** N(z) is the square of the usual absolute value of the comlex number z.
- 3. Conclude that $z \in \mathbb{Z}[\sqrt{-5}]^{\times}$ if and only if $N(z) \in \mathbb{Z}^{\times}$. Determine $\mathbb{Z}[\sqrt{-5}]^{\times}$.
- 4. Show that 2, 3, $(1 + \sqrt{-5})$ and $(1 \sqrt{-5})$ are irreducible, but not prime.
- 5. Show that 6 and $2 + 2\sqrt{-5}$ do not have a greatest common divisor.

Exercise 4.

- 1. Determine all units, prime elements and irreducible elements of $\mathbb{Z}/6\mathbb{Z}$.
- 2. Let $\mathbb{R}[T_1, T_2] = (\mathbb{R}[T_1])[T_2]$ be the polynomial ring over \mathbb{R} in T_1 and T_2 and I the ideal generated by $T_1^2 + T_2^2$. Is the class $\overline{T}_1 = T_1 + I$ a prime element in the quotient ring $\mathbb{R}[T_1, T_2]/I$? Is \overline{T}_1 irreducible?

Exercise 5 (Bonus exercise).

Prove the fundamental theorem of algebra: given a polynomial $f \in \mathbb{C}[T]$ of positive degree, then there exists a $z \in \mathbb{C}$ such that f(z) = 0.