Exercises for Algebra 1 List 15 Not to hand in

Exercise 1.

Let $\mathcal{G}: \mathcal{C} \to \mathcal{D}$ be a functor. Show that the following properties are equivalent.

- 1. Every object of \mathcal{D} has an initial morphism $(\widetilde{Y}, \eta_Y : Y \to \mathcal{G}(\widetilde{Y})$ to \mathcal{G} .
- 2. \mathcal{G} has a left adjoint $\mathcal{F}: \mathcal{D} \to \mathcal{C}$.
- 3. \mathcal{G} is part of a counit-unit adjunction $(\epsilon, \eta) : \mathcal{F} \dashv \mathcal{G}$ between \mathcal{C} and \mathcal{D} .

Exercise 2.

Show that right (left) adjoints are unique up to unique natural isomorphism. This means that if \mathcal{G} and \mathcal{G}' are right adjoints of a functor $\mathcal{F} : \mathcal{D} \to \mathcal{C}$, then there is a unique natural isomorphism $\eta : \mathcal{G} \to \mathcal{G}'$; and similar for left adjoints.

Exercise 3.

Every object A of a category C defines the functor $h^A = \operatorname{Hom}_{\mathcal{C}}(A, -) : \mathcal{C} \to \operatorname{Set}$ that sends an object B to $\operatorname{Hom}_{\mathcal{C}}(A, B)$ and a morphism $f : B \to B'$ to the map $f_* : \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(A, B')$, defined by $f_*(g) = f \circ g$.

Verify that every morphism $f: A' \to A$ defines a natural transformation $\eta_f: h^A \to h^{A'}$ that sends $g: A \to B$ in $h^A(B)$ to $g \circ f: A' \to B$ in $h^{A'}(B)$. Show that this defines a bijection between $\operatorname{Hom}_{\mathcal{C}}(A', A)$ and the set of all natural transformations $\eta: h^A \to h^{A'}$. Conclude that if there is a family of bijections

$$\{\Phi_B : \operatorname{Hom}_{\mathcal{C}}(A, B) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(A', B)\}_{B \in \operatorname{Ob}(\mathcal{C})}$$

that is functorial in B, i.e. $\Phi_{B'} \circ f_* = f_* \circ \Phi_B$ for every $f: B \to B'$, then A and A' are isomorphic.

Formulate and prove analogous results for the functor $h_A = \text{Hom}_{\mathcal{C}}(-, A)$.

Remark: These statements are often referred to as the weak Yoneda lemma.

Exercise 4.

Show that right adjoint functors preserve products and left adjoints functors preserve coproducts.

This means that if $\mathcal{G} : \mathcal{C} \to \mathcal{D}$ is right adjoint to $\mathcal{F} : \mathcal{D} \to \mathcal{C}$ and $\prod X_i$ together with morphisms $\operatorname{pr}_j : \prod X_i \to X_j$ (for $j \in I$) is a product of a family $\{X_i\}_{i \in I}$ of objects in \mathcal{C} , then $\mathcal{G}(\prod X_i)$ together with the morphisms $\mathcal{G}(\operatorname{pr}_j) : \mathcal{G}(\prod X_i) \to \mathcal{G}(X_j)$ (for $j \in I$) is a product of the family $\{\mathcal{G}(X_i)\}_{i \in I}$ in \mathcal{D} . And similar for the coproduct of a family $\{Y_i\}_{i \in I}$ of objects in \mathcal{D} .

Hint: Use Exercise 3.

Exercise 5.

Let A and B be rings and $\mathcal{G} : A - \text{Mod} \to B - \text{Mod}$ and $\mathcal{F} : B - \text{Mod} \to A - \text{Mod}$ adjoint functors with natural isomorphism $\Phi : \text{Hom}_A(\mathcal{F}(-), -) \to \text{Hom}_B(-, \mathcal{G}(-)).$

- 1. Show that \mathcal{F} and \mathcal{G} are additive functors and that $\Phi_{N,M}$: $\operatorname{Hom}_A(\mathcal{F}(N), M) \to \operatorname{Hom}_B(N, \mathcal{G}(M))$ is a group isomorphism for all A-modules M and B-modules N.
- 2. Show that \mathcal{F} is right exact. In particular, \mathcal{F} preserves cokernels.
- 3. Show that \mathcal{G} is left exact. In particular, \mathcal{G} preserves kernels.
- 4. Show that the functor

$$\operatorname{Hom}_A(M, -) : A - \operatorname{Mod} \longrightarrow A - \operatorname{Mod}$$

is right adjoint (to which functor?).

5. Show that the functors

 $-\otimes_A M: A - \operatorname{Mod} \longrightarrow A - \operatorname{Mod}$ and $-\otimes_A B: A - \operatorname{Mod} \longrightarrow B - \operatorname{Mod}$

are left adjoint (to which functors?).