Exercise 1.

Derive the weak form of Hilbert's Nullstellensatz from the strong form.

Exercise 2.

Find all singular points of the plane affine curves

 $C_1 = V(T_1T_2 - 1), \quad C_2 = V(T_1^2 - T_1T_2 + T_2^2), \quad C_3 = V(T_1^3 + 2T_1^2 + T_1 - T_2^2 - 2T_2 - 1).$

Exercise 3.

Let C = V(f) be a plane affine curve in $\mathbb{A}^2_{\mathbb{C}}$. A subset S of C is called closed if there is a $g \in \mathbb{C}[T_1, T_2]$ such that $S = C \cap V(g)$.

- 1. Show that the closed subsets of C form a topology of closed subsets for C.
- 2. Show that a curve C in $\mathbb{A}^2_{\mathbb{C}}$ is irreducible if and only if it cannot be covered by two proper closed subsets.
- 3. In case that C is irreducible, show that a subset S of C is closed if and only if S = C or S is finite.

Exercise 4.

Prove Hilbert's Basissatz and Krull's principal ideal theorem.

Exercise 5.

Let A be a ring and I an ideal of A. Show that I is radical if and only if the only nilpotent element of A/I is 0, i.e. $a^n = 0$ for n > 0 implies a = 0 for $a \in A/I$.

Exercise 6.

Let A be a ring. Show that any two elements $a, b \in A$ form an A-linear dependent set $\{a, b\}$. Conclude that every free A-submodules of A must be of rank 1. Use this to show that if every submodule of a free A-module is free, then A is a principal ideal domain.

Exercise 7.

Let A be a principal ideal domain and M a free A-module with basis $\{b_1, \ldots, b_n\}$. For an element $m = \sum m_i b_i$, define the ideal $I(m) = (m_1, \ldots, m_n)$ of A. Show that I(m)does not depend on the choice of basis of M, and that m occurs as an element of a basis for M if and only if I(m) = A.

Exercise 8.

Let A be a principal ideal domain and

 $0 \quad \longrightarrow \quad N \quad \longrightarrow \quad M \quad \longrightarrow \quad P \quad \longrightarrow \quad 0$

be a short exact sequence of finitely generated A-modules.

- 1. Show that M = 0 if and only if N = P = 0.
- 2. Show that rkM = rkN + rkP.

Exercise 9.

Consider the group homomorphism $\varphi : \mathbb{Z}^4 \to \mathbb{Z}^4$ given by the matrix

$$\begin{pmatrix} 0 & 5 & -2 & -1 \\ 3 & 1 & 1 & 3 \\ 2 & -4 & 4 & 2 \\ 8 & 8 & -8 & 8 \end{pmatrix}$$

Determine the Smith normal form of φ and the decomposition of $\mathbb{Z}^4/\mathrm{im}\varphi$ into cyclic factors. What are the invariant factors and the elementary divisors of $\mathbb{Z}^4/\mathrm{im}\varphi$?

Exercise 10.

Let $M = \mathbb{C}^4$ be the $\mathbb{C}[T]$ -module where T acts as one of the following matrices:

/1	1	0	$0\rangle$		/1	1	0	0		/1	1	0	0/	
0	1	0	0		0	1	0	0		0	1	0	0	
0	0	2	1	,	0	0	2	0	,	0	0	2	0	•
$\sqrt{0}$	0	0	$_2)$		$\setminus 0$	0	0	$_2)$		$\setminus 0$	0	0	4/	

Determine the minimal polynomial and the characteristic polynomial of each matrix, and the invariant factors and elementary divisors for each module structure on M.

Exercise 11.

Let G be an abelian group with 32 elements. Show that G is cyclic if and only if G has no subgroup H of order 2 or 4 such that

 $0 \quad \longrightarrow \quad H \quad \longrightarrow \quad G \quad \longrightarrow \quad G/H \quad \longrightarrow \quad 0$

is split.

Exercise 12.

Let A be a ring and M an A-module. Show that

 $0 \quad \longrightarrow \quad N_1 \otimes_A M \quad \longrightarrow \quad N_2 \otimes_A M \quad \longrightarrow \quad N_3 \otimes_A M \quad \longrightarrow \quad 0$

is exact if $0 \to N_1 \to N_2 \to N_3 \to 0$ is a split exact sequence.

Exercise 13.

Let A be a ring and I and J ideals of A. Show that $(A/I) \otimes_A (A/J)$ is isomorphic to A/(I+J).

Exercise 14.

Let A be a ring and $f : A^n \to A^n$ be the A-linear map that is defined by the matrix $(a_{i,j})$. Show that $\Lambda^n(f) : \Lambda^n A^n \to \Lambda^n A^n$ is multiplication by $\det(a_{i,j})$ under the identification $\Lambda^n A^n$ with A given by the standard basis of A^n .

Exercise 15.

Let k be a field, V a finite dimensional k-vector space and $V^* = \operatorname{Hom}_k(V, k)$ the dual dual space. Describe an isomorphism $\varphi_l : \Lambda^l(V^*) \to (\Lambda^l V)^*$ for every $l \ge 0$.

Exercise 16.

Let A be a ring and M an A-module. A *free resolution of* M is an exact sequence of the form

 \longrightarrow N_i \longrightarrow \cdots \longrightarrow N_0 \longrightarrow M \longrightarrow 0

where N_i is a free A-module for all $i \ge 0$. The *length* of the free resolution is the supremum over all indices i such that $N_i \ne 0$.

- 1. Show that every A-module has a free resolution.
- 2. Let A = k[T] be a polynomial ring over a field k. Show that every A-module M with $\dim_k M < \infty$ has a free resolution of length 1.
- 3. Show that M = k as the $k[T_1, T_2]$ -module with $T_1 \cdot m = 0 = T_2 \cdot m$ for $m \in M$ does not have a free resolution of length 1.