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Exercise 1.
Derive the weak form of Hilbert’s Nullstellensatz from the strong form.

Exercise 2.
Find all singular points of the plane affine curves

C1 = V (T1T2−1), C2 = V (T 2
1 −T1T2+T 2

2 ), C3 = V (T 3
1 +2T 2

1 +T1−T 2
2 −2T2−1).

Exercise 3.
Let C = V (f) be a plane affine curve in A2

C. A subset S of C is called closed if there is
a g ∈ C[T1, T2] such that S = C ∩ V (g).

1. Show that the closed subsets of C form a topology of closed subsets for C.

2. Show that a curve C in A2
C is irreducible if and only if it cannot be covered by two

proper closed subsets.

3. In case that C is irreducible, show that a subset S of C is closed if and only if
S = C or S is finite.

Exercise 4.
Prove Hilbert’s Basissatz and Krull’s principal ideal theorem.

Exercise 5.
Let A be a ring and I an ideal of A. Show that I is radical if and only if the only
nilpotent element of A/I is 0, i.e. an = 0 for n > 0 implies a = 0 for a ∈ A/I.

Exercise 6.
Let A be a ring. Show that any two elements a, b ∈ A form an A-linear dependent set
{a, b}. Conclude that every free A-submodules of A must be of rank 1. Use this to show
that if every submodule of a free A-module is free, then A is a principal ideal domain.

Exercise 7.
Let A be a principal ideal domain and M a free A-module with basis {b1, . . . , bn}. For
an element m =

∑
mi.bi, define the ideal I(m) = (m1, . . . ,mn) of A. Show that I(m)

does not depend on the choice of basis of M , and that m occurs as an element of a basis
for M if and only if I(m) = A.



Exercise 8.
Let A be a principal ideal domain and

0 −→ N −→ M −→ P −→ 0

be a short exact sequence of finitely generated A-modules.

1. Show that M = 0 if and only if N = P = 0.

2. Show that rkM = rkN + rkP .

Exercise 9.
Consider the group homomorphism ϕ : Z4 → Z4 given by the matrix

0 5 −2 −1
3 1 1 3
2 −4 4 2
8 8 −8 8


Determine the Smith normal form of ϕ and the decomposition of Z4/imϕ into cyclic
factors. What are the invariant factors and the elementary divisors of Z4/imϕ?

Exercise 10.
Let M = C4 be the C[T ]-module where T acts as one of the following matrices:

1 1 0 0
0 1 0 0
0 0 2 1
0 0 0 2

 ,


1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 ,


1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 4

 .

Determine the minimal polynomial and the characteristic polynomial of each matrix,
and the invariant factors and elementary divisors for each module structure on M .

Exercise 11.
Let G be an abelian group with 32 elements. Show that G is cyclic if and only if G has
no subgroup H of order 2 or 4 such that

0 −→ H −→ G −→ G/H −→ 0

is split.

Exercise 12.
Let A be a ring and M an A-module. Show that

0 −→ N1 ⊗A M −→ N2 ⊗A M −→ N3 ⊗A M −→ 0

is exact if 0→ N1 → N2 → N3 → 0 is a split exact sequence.



Exercise 13.
Let A be a ring and I and J ideals of A. Show that (A/I) ⊗A (A/J) is isomorphic to
A/(I + J).

Exercise 14.
Let A be a ring and f : An → An be the A-linear map that is defined by the matrix (ai,j).
Show that Λn(f) : ΛnAn → ΛnAn is multiplication by det(ai,j) under the identification
ΛnAn with A given by the standard basis of An.

Exercise 15.
Let k be a field, V a finite dimensional k-vector space and V ∗ = Homk(V, k) the dual
dual space. Describe an isomorphism ϕl : Λl(V ∗)→ (ΛlV )∗ for every l ≥ 0.

Exercise 16.
Let A be a ring and M an A-module. A free resolution of M is an exact sequence of the
form

−→ Ni −→ · · · −→ N0 −→ M −→ 0

where Ni is a free A-module for all i ≥ 0. The length of the free resolution is the
supremum over all indices i such that Ni 6= 0.

1. Show that every A-module has a free resolution.

2. Let A = k[T ] be a polynomial ring over a field k. Show that every A-module M
with dimk M <∞ has a free resolution of length 1.

3. Show that M = k as the k[T1, T2]-module with T1.m = 0 = T2.m for m ∈M does
not have a free resolution of length 1.


