List 14
Not to hand in

Oliver Lorscheid
Esteban Arreaga (monitor)

Exercise 1.

Derive the weak form of Hilbert's Nullstellensatz from the strong form.

Exercise 2.

Find all singular points of the plane affine curves
$C_{1}=V\left(T_{1} T_{2}-1\right), \quad C_{2}=V\left(T_{1}^{2}-T_{1} T_{2}+T_{2}^{2}\right), \quad C_{3}=V\left(T_{1}^{3}+2 T_{1}^{2}+T_{1}-T_{2}^{2}-2 T_{2}-1\right)$.

Exercise 3.

Let $C=V(f)$ be a plane affine curve in $\mathbb{A}_{\mathbb{C}}^{2}$. A subset S of C is called closed if there is a $g \in \mathbb{C}\left[T_{1}, T_{2}\right]$ such that $S=C \cap V(g)$.

1. Show that the closed subsets of C form a topology of closed subsets for C.
2. Show that a curve C in $\mathbb{A}_{\mathbb{C}}^{2}$ is irreducible if and only if it cannot be covered by two proper closed subsets.
3. In case that C is irreducible, show that a subset S of C is closed if and only if $S=C$ or S is finite.

Exercise 4.

Prove Hilbert's Basissatz and Krull's principal ideal theorem.

Exercise 5.

Let A be a ring and I an ideal of A. Show that I is radical if and only if the only nilpotent element of A / I is 0 , i.e. $a^{n}=0$ for $n>0$ implies $a=0$ for $a \in A / I$.

Exercise 6.

Let A be a ring. Show that any two elements $a, b \in A$ form an A-linear dependent set $\{a, b\}$. Conclude that every free A-submodules of A must be of rank 1 . Use this to show that if every submodule of a free A-module is free, then A is a principal ideal domain.

Exercise 7.

Let A be a principal ideal domain and M a free A-module with basis $\left\{b_{1}, \ldots, b_{n}\right\}$. For an element $m=\sum m_{i} . b_{i}$, define the ideal $I(m)=\left(m_{1}, \ldots, m_{n}\right)$ of A. Show that $I(m)$ does not depend on the choice of basis of M, and that m occurs as an element of a basis for M if and only if $I(m)=A$.

Exercise 8.

Let A be a principal ideal domain and

$$
0 \quad \longrightarrow \quad N \quad \longrightarrow \quad M \quad \longrightarrow \quad P \quad \longrightarrow \quad 0
$$

be a short exact sequence of finitely generated A-modules.

1. Show that $M=0$ if and only if $N=P=0$.
2. Show that $\operatorname{rk} M=\operatorname{rk} N+\operatorname{rk} P$.

Exercise 9.

Consider the group homomorphism $\varphi: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4}$ given by the matrix

$$
\left(\begin{array}{cccc}
0 & 5 & -2 & -1 \\
3 & 1 & 1 & 3 \\
2 & -4 & 4 & 2 \\
8 & 8 & -8 & 8
\end{array}\right)
$$

Determine the Smith normal form of φ and the decomposition of $\mathbb{Z}^{4} / \operatorname{im} \varphi$ into cyclic factors. What are the invariant factors and the elementary divisors of $\mathbb{Z}^{4} / \operatorname{im} \varphi$?

Exercise 10.

Let $M=\mathbb{C}^{4}$ be the $\mathbb{C}[T]$-module where T acts as one of the following matrices:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}\right) .
$$

Determine the minimal polynomial and the characteristic polynomial of each matrix, and the invariant factors and elementary divisors for each module structure on M.

Exercise 11.

Let G be an abelian group with 32 elements. Show that G is cyclic if and only if G has no subgroup H of order 2 or 4 such that

$$
0 \quad \longrightarrow \quad H \quad \longrightarrow \quad G \quad \longrightarrow \quad G / H \quad \longrightarrow \quad 0
$$

is split.

Exercise 12.

Let A be a ring and M an A-module. Show that

$$
0 \quad \longrightarrow \quad N_{1} \otimes_{A} M \quad \longrightarrow \quad N_{2} \otimes_{A} M \quad \longrightarrow \quad N_{3} \otimes_{A} M \quad \longrightarrow 0
$$

is exact if $0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0$ is a split exact sequence.

Exercise 13.

Let A be a ring and I and J ideals of A. Show that $(A / I) \otimes_{A}(A / J)$ is isomorphic to $A /(I+J)$.

Exercise 14.

Let A be a ring and $f: A^{n} \rightarrow A^{n}$ be the A-linear map that is defined by the matrix $\left(a_{i, j}\right)$. Show that $\Lambda^{n}(f): \Lambda^{n} A^{n} \rightarrow \Lambda^{n} A^{n}$ is multiplication by $\operatorname{det}\left(a_{i, j}\right)$ under the identification $\Lambda^{n} A^{n}$ with A given by the standard basis of A^{n}.

Exercise 15.

Let k be a field, V a finite dimensional k-vector space and $V^{*}=\operatorname{Hom}_{k}(V, k)$ the dual dual space. Describe an isomorphism $\varphi_{l}: \Lambda^{l}\left(V^{*}\right) \rightarrow\left(\Lambda^{l} V\right)^{*}$ for every $l \geq 0$.

Exercise 16.

Let A be a ring and M an A-module. A free resolution of M is an exact sequence of the form

$$
\longrightarrow \quad N_{i} \quad \longrightarrow \quad \cdots \quad \longrightarrow \quad N_{0} \quad \longrightarrow \quad M \quad \longrightarrow \quad 0
$$

where N_{i} is a free A-module for all $i \geq 0$. The length of the free resolution is the supremum over all indices i such that $N_{i} \neq 0$.

1. Show that every A-module has a free resolution.
2. Let $A=k[T]$ be a polynomial ring over a field k. Show that every A-module M with $\operatorname{dim}_{k} M<\infty$ has a free resolution of length 1.
3. Show that $M=k$ as the $k\left[T_{1}, T_{2}\right]$-module with $T_{1} \cdot m=0=T_{2} . m$ for $m \in M$ does not have a free resolution of length 1.
