Exercise 1.

Let N be the submodule of the free \mathbb{Z}-module \mathbb{Z}^{4} that is generated by

$$
(1,1,1,0), \quad(1,1,0,1), \quad(1,0,1,1), \text { and } \quad(0,1,1,1)
$$

Determine a basis $\left\{b_{1}, \ldots, b_{4}\right\}$ of \mathbb{Z}^{4} and integers a_{1}, \ldots, a_{4} such that $\left\{a_{1} b_{1}, \ldots, a_{4} b_{4}\right\}$ is a basis of N.

Exercise 2.

Prove the theorem of the Smith normal form.

Exercise 3.

Let k be a field, M a finite dimensional k-vector space and $\varphi: M \rightarrow M$ a k-linear map. Let $I_{1}=\left(f_{1}\right), \ldots, I_{s}=\left(f_{s}\right)$ be the invariant factors of M as $k[T]$-module where T acts as φ and where f_{1}, \ldots, f_{s} are monic polynomials. Show that $\prod_{i=1}^{s} f_{i}$ is the characteristic polynomial of φ.

Hint: Reduce the situation to the case where M is cyclic and use that in this case, the characteristic polynomial equals the minimal polynomial.

Exercise 4.

Let k be a field and M a finite dimensional k-vector space. A k-linear map $\varphi: M \rightarrow M$ is called diagonalizable if it acts as a diagonal matrix with respect to some basis of M. Show that φ is diagonalizable if and only if the minimal polynomial is of the form

$$
\min _{\varphi}=\prod_{i=1}^{n}\left(T-\alpha_{i}\right)
$$

for pairwise distinct $\alpha_{1}, \ldots, \alpha_{n} \in k$. Is the \mathbb{C}-linear map $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ given by the matrix $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ for the standard basis of \mathbb{C}^{2} diagonalizable?

Exercise 5 (Bonus).
Let k be a field, M and N finite dimensional k-vector spaces, and $\varphi: M \rightarrow M$ and $\psi: N \rightarrow N k$-linear maps. Assume that their respective characteristic polynomials factor as

$$
\operatorname{char}_{\varphi}=\prod_{i=1}^{m}\left(T-\alpha_{i}\right), \text { and } \operatorname{char}_{\psi}=\prod_{j=1}^{n}\left(T-\beta_{j}\right)
$$

Show that the formula $\varphi \otimes \psi(m \otimes n)=\varphi(m) \otimes \psi(n)$ defines a k-linear homomorphism $\varphi \otimes \psi: M \otimes_{k} N \rightarrow M \otimes_{k} N$, whose characteristic polynomial is

$$
\operatorname{char}_{\varphi \otimes \psi}=\prod_{i, j}\left(T-\alpha_{i} \beta_{j}\right)
$$

