Exercise 1.

Let N be the submodule of the free \mathbb{Z} -module \mathbb{Z}^4 that is generated by

(1,1,1,0), (1,1,0,1), (1,0,1,1), and (0,1,1,1).

Determine a basis $\{b_1, \ldots, b_4\}$ of \mathbb{Z}^4 and integers a_1, \ldots, a_4 such that $\{a_1b_1, \ldots, a_4b_4\}$ is a basis of N.

Exercise 2.

Prove the theorem of the Smith normal form.

Exercise 3.

Let k be a field, M a finite dimensional k-vector space and $\varphi : M \to M$ a k-linear map. Let $I_1 = (f_1), \ldots, I_s = (f_s)$ be the invariant factors of M as k[T]-module where T acts as φ and where f_1, \ldots, f_s are monic polynomials. Show that $\prod_{i=1}^s f_i$ is the characteristic polynomial of φ .

Hint: Reduce the situation to the case where M is cyclic and use that in this case, the characteristic polynomial equals the minimal polynomial.

Exercise 4.

Let k be a field and M a finite dimensional k-vector space. A k-linear map $\varphi : M \to M$ is called *diagonalizable* if it acts as a diagonal matrix with respect to some basis of M. Show that φ is diagonalizable if and only if the minimal polynomial is of the form

$$\min_{\varphi} = \prod_{i=1}^{n} (T - \alpha_i)$$

for pairwise distinct $\alpha_1, \ldots, \alpha_n \in k$. Is the \mathbb{C} -linear map $\varphi : \mathbb{C}^2 \to \mathbb{C}^2$ given by the matrix $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ for the standard basis of \mathbb{C}^2 diagonalizable?

Exercise 5 (Bonus).

Let k be a field, M and N finite dimensional k-vector spaces, and $\varphi : M \to M$ and $\psi : N \to N$ k-linear maps. Assume that their respective characteristic polynomials factor as

$$\operatorname{char}_{\varphi} = \prod_{i=1}^{m} (T - \alpha_i), \text{ and } \operatorname{char}_{\psi} = \prod_{j=1}^{n} (T - \beta_j).$$

Show that the formula $\varphi \otimes \psi(m \otimes n) = \varphi(m) \otimes \psi(n)$ defines a k-linear homomorphism $\varphi \otimes \psi : M \otimes_k N \to M \otimes_k N$, whose characteristic polynomial is

$$\operatorname{char}_{\varphi \otimes \psi} = \prod_{i,j} (T - \alpha_i \beta_j).$$