## Exercise 1.

Consider the submodule $N$ of the $\mathbb{Z}$-module $M=\mathbb{Z}^{2}$ that is generated by $(1,1)$ and $(1,-1)$. Determine the free rank and the elementary divisors of $M / N$. Determine further the ideals of $\mathbb{Z}$ that occur as the annihilator $A n n_{\mathbb{Z}}(m)$ of an element $m$ of $M / N$.

Exercise 2. Consider the $\mathbb{C}[T]$-module $M=\mathbb{C}^{3}$ where $T$ acts as one of the matrices
(1) $T=\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right)$
(2) $T=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right)$
(3) $T=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$
(4) $T=\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu\end{array}\right)$
(5) $T=\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu\end{array}\right)$
(6) $T=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu\end{array}\right)$
and where $\lambda, \mu$ and $\nu$ are pairwise distinct complex numbers. Determine in each case the characteristic polynomial and the minimal polynomial of $T$, as well as the elementary divisors and the invariant factors of $M$.

## Exercise 3.

Let $A$ be a ring and $\operatorname{Mat}_{n \times n}(A)$ the set of $n \times n$-matrices with coefficients in $A$.

1. Show that $\operatorname{Mat}_{n \times n}(A)$ is a noncommutative ring with respect to matrix addition and matrix multiplication. What are 0 and 1 ?
2. Show that the inclusion $f: A \rightarrow \operatorname{Mat}_{n \times n}(A)$ as diagonal matrices is a homomorphism of (noncommutative) rings, i.e. $f(a+b)=f(a)+f(b), f(a \cdot b)=f(a) \cdot f(b)$ and $f(1)=1$.
3. The determinant is the map det : $\operatorname{Mat}_{n \times n}(A) \rightarrow A$ that sends a matrix $T=$ $\left(a_{i, j}\right)_{i, j=1, \ldots, n}$ to the element

$$
\operatorname{det}(T)=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

of $A$. Show that det is multiplicative, i.e. $\operatorname{det}\left(T \cdot T^{\prime}\right)=\operatorname{det}(T) \cdot \operatorname{det}\left(T^{\prime}\right)$ and $\operatorname{det}(1)=1$.
4. Show that a matrix $T$ is a unit in $\operatorname{Mat}_{n \times n}(A)$, i.e. $T T^{\prime}=1$ for some matrix $T^{\prime}$, if and only if $\operatorname{det}(T)$ is a unit in $A$.

## Exercise 4.

An $A$-module $M$ is flat if $-\otimes_{A} M$ is exact.

1. Show that every free $A$-module is flat. Conclude that every projective $A$-module is flat. (Hint: Use property 2 from Exercise 4 on List 10.)
2. Let $I$ be an ideal of $A$. Show that $I \otimes_{A} M \simeq I M$ if $M$ is flat.
3. Show that every ideal of a principal ideal domain $A$ is flat as an $A$-module, and conclude that $I J \simeq I \otimes_{A} J$ for all ideals $I$ and $J$ of $A$.

Exercise 5 (Bonus).
An $A$-module is called Noetherian if every of its submodules is finitely generated over $A$. A ring $A$ is called Noetherian if it is Noetherian as a module over itself, i.e. if all of its ideals are finitely generated.

1. Let $A$ be any ring. Show that if $M \rightarrow Q$ is an epimorphism of $A$-modules and $M$ is Noetherian, then $Q$ is Noetherian.
2. Let $M_{1}, \ldots, M_{n}$ be Noetherian $A$-modules. Show (by induction on $n$ ) that $\bigoplus_{i=1}^{n} M_{i}$ is Noetherian.
3. Let $A$ be Noetherian ring. Conclude that every finitely generated $A$-module is Noetherian.
4. Use this to give an alternative proof of Corollary 2 of section 4.8 of the lecture.
