Exercises for Algebra 1	Instituto Nacional de Matemática Pura e Aplicada
List 10	Oliver Lorscheid
To hand in at 1.6. in the exercise c	lass Esteban Arreaga (monitor)

Exercise 1.

Show that the additive group of \mathbb{Q} is a torsionfree \mathbb{Z} -module. Show that every free submodule of \mathbb{Q} is cyclic, and show that the same is true for finitely generated submodules of \mathbb{Q} . Give an example of a proper submodule $N \subsetneq \mathbb{Q}$ that is not cyclic.

Exercise 2.

Let $A = \mathbb{C}[T]$ and consider $N = \mathbb{C}^n$ as an A-module by letting T act as a complex $n \times n$ -matrix M. Show that N is a cyclic A-module if and only if the Jordan normal form of M consists of only one Jordan block, i.e. if M is conjugated to a matrix of the form

$$\begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}$$

for some $\lambda \in \mathbb{C}$.

Exercise 3.

Let A be an integral domain. Show that a homomorphism $f: M \to N$ of A-modules restricts to a homomorphism $T(M) \to T(N)$ between their respective torsion modules. Show that this defines a left exact functor $T: A - \text{Mod} \to A - \text{Mod}$.

Exercise 4. Show that the following properties for an A-module P are equivalent.

- 1. The functor Hom(-, P) is exact.
- 2. There is an A-module Q such that $P \oplus Q$ is free.
- 3. Every short exact sequence of A-modules of the form $0 \to N \to M \to P \to 0$ splits.
- 4. For every epimorphism $p: M \to Q$ of A-modules and every homomorphism $f: P \to Q$, there is a homomorphism $g: Q \to M$ such that $f = p \circ g$.

An A-module P with these properties is called *projective*. Conclude that every free A-module is projective. Show that $\mathbb{Z}/2\mathbb{Z}$ is a projective $\mathbb{Z}/6\mathbb{Z}$ -module that is not free.

Remark: An A-module I is *injective* if and only if Hom(I, -) is exact. It can be shown that there are analogous characterizations as in (3) and (4) for injective modules. However, there is no explicit description as in (2) in general. For $A = \mathbb{Z}$, one can show that a \mathbb{Z} -module I is injective if and only if it is *divisible*, i.e. for every $m \in I$ and every l > 0 there exists an $n \in I$ such that l.n = m.

Exercise 5 (Bonus).

Let $f : A \to B$ be a ring homomorphism, M an A-module and N a B-module. Show the following assertions.

- 1. The abelian group $f_*M = M \otimes_A B$ is a *B*-module with respect to the action $a.(m \otimes b) = m \otimes ab$. A homomorphism $M \to M'$ of *A*-modules induces a homomorphism $M \otimes_A B \to M' \otimes_A B$ of *B*-modules via $m \otimes b \mapsto f(m) \otimes b$. This defines a functor $f_*: A \text{Mod} \to B \text{Mod}$, called the *push forward along* f.
- 2. The abelian group $f^*N = N$ is an A-module with respect to the action a.m = f(a).m. A homomorphism $N \to N'$ of B-modules is also a homomorphism of A-modules. This defines a functor $f^*: B \text{Mod} \to A \text{Mod}$, called the *pull back along f*.
- 3. The association $(g: M \to f^*N) \mapsto (m \otimes b \mapsto b.g(m))$ defines a bijection $\Phi_{M,N}$: Hom_A $(M, f^*N) \to \text{Hom}_B(f_*M, N)$. This bijection is *functorial* in M and N, i.e. a homomorphism $h: M \to M'$ of A-modules yields a commutative square

$$\operatorname{Hom}_{A}(M', f^{*}N) \xrightarrow{\Phi_{M',N}} \operatorname{Hom}_{B}(f_{*}M', N) \xrightarrow{h^{*}} \operatorname{Hom}_{A}(M, f^{*}N) \xrightarrow{\Phi_{M,N}} \operatorname{Hom}_{B}(f_{*}M, N)$$

and a homomorphism $h: N \to N'$ of B-modules yields a commutative square

$$\begin{array}{c|c} \operatorname{Hom}_{A}(M, f^{*}N) & \xrightarrow{\Phi_{M,N}} & \operatorname{Hom}_{B}(f_{*}M, N) \\ & (f^{*}(h))_{*} \\ & \downarrow & \downarrow (h)_{*} \\ \operatorname{Hom}_{A}(M, f^{*}N') & \xrightarrow{\Phi_{M,N'}} & \operatorname{Hom}_{B}(f_{*}M, N'). \end{array}$$

Remark: This exercise verifies that the functor $f_* : A - Mod \rightarrow B - Mod$ is *left adjoint* to $f^* : B - Mod \rightarrow A - Mod$.