## Exercise 1.

Show that the additive group of $\mathbb{Q}$ is a torsionfree $\mathbb{Z}$-module. Show that every free submodule of $\mathbb{Q}$ is cyclic, and show that the same is true for finitely generated submodules of $\mathbb{Q}$. Give an example of a proper submodule $N \subsetneq \mathbb{Q}$ that is not cyclic.

## Exercise 2.

Let $A=\mathbb{C}[T]$ and consider $N=\mathbb{C}^{n}$ as an $A$-module by letting $T$ act as a complex $n \times n$-matrix $M$. Show that $N$ is a cyclic $A$-module if and only if the Jordan normal form of $M$ consists of only one Jordan block, i.e. if $M$ is conjugated to a matrix of the form

$$
\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right)
$$

for some $\lambda \in \mathbb{C}$.

## Exercise 3.

Let $A$ be an integral domain. Show that a homomorphism $f: M \rightarrow N$ of $A$-modules restricts to a homomorphism $T(M) \rightarrow T(N)$ between their respective torsion modules. Show that this defines a left exact functor $T: A-\operatorname{Mod} \rightarrow A-\operatorname{Mod}$.

Exercise 4. Show that the following properties for an $A$-module $P$ are equivalent.

1. The functor $\operatorname{Hom}(-, P)$ is exact.
2. There is an $A$-module $Q$ such that $P \oplus Q$ is free.
3. Every short exact sequence of $A$-modules of the form $0 \rightarrow N \rightarrow M \rightarrow P \rightarrow 0$ splits.
4. For every epimorphism $p: M \rightarrow Q$ of $A$-modules and every homomorphism $f:$ $P \rightarrow Q$, there is a homomorphism $g: Q \rightarrow M$ such that $f=p \circ g$.

An $A$-module $P$ with these properties is called projective. Conclude that every free $A$ module is projective. Show that $\mathbb{Z} / 2 \mathbb{Z}$ is a projective $\mathbb{Z} / 6 \mathbb{Z}$-module that is not free.

Remark: An $A$-module $I$ is injective if and only if $\operatorname{Hom}(I,-)$ is exact. It can be shown that there are analogous characterizations as in (3) and (4) for injective modules. However, there is no explicit description as in (2) in general. For $A=\mathbb{Z}$, one can show that a $\mathbb{Z}$-module $I$ is injective if and only if it is divisible, i.e. for every $m \in I$ and every $l>0$ there exists an $n \in I$ such that $l . n=m$.

Exercise 5 (Bonus).
Let $f: A \rightarrow B$ be a ring homomorphism, $M$ an $A$-module and $N$ a $B$-module. Show the following assertions.

1. The abelian group $f_{*} M=M \otimes_{A} B$ is a $B$-module with respect to the action $a$. $(m \otimes$ $b)=m \otimes a b$. A homomorphism $M \rightarrow M^{\prime}$ of $A$-modules induces a homomorphism $M \otimes_{A} B \rightarrow M^{\prime} \otimes_{A} B$ of $B$-modules via $m \otimes b \mapsto f(m) \otimes b$. This defines a functor $f_{*}: A-\operatorname{Mod} \rightarrow B-\operatorname{Mod}$, called the push forward along $f$.
2. The abelian group $f^{*} N=N$ is an $A$-module with respect to the action $a \cdot m=$ $f(a)$.m. A homomorphism $N \rightarrow N^{\prime}$ of $B$-modules is also a homomorphism of $A$-modules. This defines a functor $f^{*}: B-\operatorname{Mod} \rightarrow A-\operatorname{Mod}$, called the pull back along $f$.
3. The association $\left(g: M \rightarrow f^{*} N\right) \mapsto(m \otimes b \mapsto b . g(m))$ defines a bijection $\Phi_{M, N}:$ $\operatorname{Hom}_{A}\left(M, f^{*} N\right) \rightarrow \operatorname{Hom}_{B}\left(f_{*} M, N\right)$. This bijection is functorial in $M$ and $N$, i.e. a homomorphism $h: M \rightarrow M^{\prime}$ of $A$-modules yields a commutative square

and a homomorphism $h: N \rightarrow N^{\prime}$ of $B$-modules yields a commutative square


Remark: This exercise verifies that the functor $f_{*}: A-\operatorname{Mod} \rightarrow B-\operatorname{Mod}$ is left adjoint to $f^{*}: B-\operatorname{Mod} \rightarrow A-\operatorname{Mod}$.

