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Let G be a group with neutral element e.

Exercise 1 (Uniqueness of the neutral element and inverses).

1. Let e′ ∈ G be an element such that e′a = a for all a ∈ G. Then e′ = e.

2. Let a, b ∈ G be elements such that ab = e. Then b = a−1.

3. Show that (ab)−1 = b−1a−1 for all a, b ∈ G.

Exercise 2 (Properties of group homomorphisms).
Let f : G→ H be a group homomorphism. Show that f(e) = e and that f(a)−1 = f(a−1).
Show that f is an isomorphism if and only if there exists a group homomorphism g : H → G
such that f ◦ g is the identity map on H and such that g ◦ f is the identity map on G.

Exercise 3 (Properties of subgroups).
Let H be a subset of G. Show that H is a subgroup of G if and only if e ∈ H, m(H×H) ⊂ H
and i(H) ⊂ H. In other words, H is a subgroup if and only if it is a group with respect to
the restrictions of m and i to H.

Exercise 4 (The center).
Show that the center of G

Z(G) = { a ∈ G | ab = ba for all b ∈ G }

is a subgroup of G. Show that Z(G) is commutative. Show that Z(G) is normal. Is every
commutative subgroup normal?

Exercise 5 (The subgroup generated by a subset).

1. Let {Hi}i∈I be a family of subgroups of G. Show that the intersection
⋂
i∈I Hi is a

subgroup of G.

2. Let S ⊂ G be a subset. Show that⋂
H<G with S⊂H

H =
{
a1a
−1
2 · · · a2n−1a

−1
2n

∣∣n ≥ 1 and a1, . . . , an ∈ S ∪ {e}
}

and conclude that there is a unique smallest subgroup 〈S〉 of G that contains S.

Exercise 6 (Orders of elements in abelian groups).
Let G be an abelian group and a, b ∈ G. Then ord ab is a divisor ord a · ord b. Is this also
true if G is not abelian?



Exercise 7 (Cyclic groups and the Klein four-group).

1. Classify all cyclic groups up to isomorphism. Which of them are abelian?

2. Show that a cyclic group of order n has a unique subgroup of order d for each divisor
d of n.

3. Is the Klein four-group V = Z/2Z× Z/2Z cyclic? Is it abelian?

Exercise 8 (Dihedral groups).
Let Dn be the group of symmetries of a regular polygon with n sides. Show that Dn = 〈r, s〉
where r is a rotation around the center of the polygon by an angle of 2π/n and s is the
reflection at a line passing through the center of the polygon and one of its vertices. What
is the number of elements of Dn? Show that D3 ' S3, and that for n ≥ 4, the dihedral
group Dn is not isomorphic to a symmetric group.

Exercise 9 (Symmetric groups).
The symmetric group Sn is the group of permutations of the numbers 1, . . . , n, together with
composition as multiplication, i.e. σ ·τ = σ◦τ . An element σ of Sn is called a cycle (of length
l) if ordσ = l and if there is an i ∈ {1, . . . , n} such that σ(j) = j if j /∈ {i, σ(i), . . . , σl−1(i)};
we write σ =

(
i, σ(i), . . . , σl−1(i)

)
in this case.

1. Show that
(
i, . . . , σl−1(i)

)
=
(
j, . . . , σl−1(j)

)
if j = σn(i) for some n ≥ 0.

2. Two cycles σ =
(
i, . . . , σl−1(i)

)
and τ =

(
j, . . . , τk−1(j)

)
are called disjoint if the sets

{i, . . . , σl−1(i)} and {j, . . . , τk−1(j)} are disjoint. Show that σ and τ are disjoint if
and only if στ = τσ.

3. Show that every element of Sn can be written as a product of disjoint cycles.

4. A transposition is a cycle (i, j) of length 2. Show that every element of Sn can be
written as a product of transpositions.

Exercise 10 (The signum).
Let σ be an element of Sn and σ = τn ◦ · · · ◦ τ1 and σ = τ ′m ◦ · · · ◦ τ ′1 two representations of
σ as a product of transpositions τ1, . . . , τn and τ ′1, . . . , τ

′
m.

1. Show that n −m is even. Conclude that the map sign : Sn → {±1} that sends σ to
(−1)n is well-defined.

2. Show that sign is a group homomorphism.

Exercise 11 (Theorem of Cayley).
Let G = {a1, · · · , an} be of finite order n. Define the map f : G → Sn that sends al
to the permutation σl with σl(i) = j such that alai = aj . Show that f is an injective
group homomorphism. Conclude that every finite group is isomorphic to a subgroup of a
symmetric group.



Exercise 12 (The alternating group).
The alternating group An is defined as the kernel of sign : Sn → {±1}. A group G is called
simple if G 6= {e} and if the only normal subgroups of G are {e} and G.

1. Show that a cyclic group G of order n is simple if and only if n is a prime number.

2. Show that A3 is simple. Show that A4 is not simple. What about A1 and A2?

3. Show that An is simple for n ≥ 5.1

Exercise 13 (Quaternion group).
The quaternion group Q consists of the elements {±1,±i,±j,±k}, and the multiplication
is determined by the following rules: 1 is the neutral element, (−1)2 = 1 and

i2 = j2 = k2 = −1, (−1)i = −i, (−1)j = −j, (−1)k = −k, ij = k = −ji.

1. Is Q abelian?

2. Describe all subgroups of Q.

3. Which subgroups are normal? What are the respective quotient groups?

Exercise 14.
Classify all groups with 6 elements and all groups with 8 elements up to isomorphism.

Exercise 15 (Transitivity of index).
Let H be a subgoup of G and K a subgroup of H. Show that (G : K) = (G : H)(H : K).

Exercise 16 (Quotients by non-normal subgroups).
Let H be subgroup of G. Show that the association ([a], [b]) 7→ [ab] is not well-defined on
cosets [a], [b] ∈ G/H if H is not normal in G.

Exercise 17 (Alternative characterization of normal subgroups).
A subgroup H of G is normal if and only if gHg−1 ⊂ H for every g ∈ G.

Exercise 18 (Exercises on normal subgroups).
Show the following statements.

1. Every subgroup of index 2 is normal.

2. Every subgroup of an abelian group is normal. Is there a nonabelian group G such
that every subgroup H of G is normal?

3. The intersection of two normal subroups is a normal subgroup. If both normal sub-
groups have finite index, then their intersection has also finite index.

1This exercise is more difficult than others, but solutions can be found in the literature.



Exercise 19 (Universal property of the quotient).
Let N be a normal subgroup of G. Show that the quotient map π : G→ G/N satisfies the
following universal property: for every group homomorphism f : G→ H with f(a) = e for
a ∈ N there exists a unique group homomorphism g : G/N → H such that f = g ◦ π:

G

π
��

∀ f // H

G/N

∃! g
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Exercise 20 (Universal property of the product).
Let {Gi}i∈I be a family of groups and G =

∏
Gi their product.

1. Show that the map πi : G → Gi that sends (gi)i∈I to gi is a surjecive group homo-
morphism for every i ∈ I. These maps are called the canonical projections.

2. Show that the product together with the canonical projections satisfies the following
universal property: for every family of group homomorphisms {fi : H → Gi}i∈I , there
is a unique group homomorphism f : H →

∏
Gi such that fi = πi ◦ f for every i ∈ I:

H

∀ fi
((

∃! f //
∏
Gi

πi
��
Gi

.

Exercise 21 (Universal property of the direct sum).
Let {Gi}i∈I be a family of abelian groups and G =

⊕
Gi their direct sum.

1. Show that the map ιi : Gi → G that sends g to (gj)j∈I with gi = g and gj = ej for
j 6= i is an injective group homomorphism for every i ∈ I. These maps are called the
canonical injections.

2. Show that the direct sum together with the canonical injections satisfies the following
universal property: for every family of group homomorphisms {fi : Gi → H}i∈I of
abelian groups, there is a unique group homomorphism f :

⊕
Gi → H such that

fi = f ◦ ιi for every i ∈ I:

⊕
Gi

∃! f // H

Gi

ιi

OO

∀ fi
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3. Is the same true if H is a non-abelian group?



Exercise 22 (Some group actions).
Show that the following maps are group actions.

1. Sn × {1, . . . , n} → {1, . . . , n}, with σ.i = σ(i).

2. GLn(R)× Rn → Rn, with g.v = g · v (usual matrix multiplication).

3. R× × Rn → Rn, with a.v = a · v (scalar multiplication).

4. The permutation of the vertices of a regular n-gon by elements of the dihedral group
Dn.

Exercise 23 (Center and centralizer).

1. Show that the definitions of the center Z(G) from the lecture and Exercise 4 agree,
i.e. that {

x ∈ G
∣∣O(x) = {x}

}
=
{
a ∈ G

∣∣ ab = ba for all b ∈ G
}

where the orbit O(x) is taking w.r.t. the action of G on G by conjugation.

2. Show that CG(x) = {a ∈ G|ax = xa}.

3. Show that
Z(G) =

⋂
x∈G

CG(x).

Exercise 24 (Normalizer).
Let H be a subgroup of G. Show that its normalizer NormG(H) is the largest subgroup of
G containing H such that H is a normal subgroup of NormG(H). Show further that the
following properties are equivalent:

1. H is normal in G;

2. NormG(H) = G;

3. H is a fixed point for the action of G on the set of all subgroups of G by conjugation.

Exercise 25 (Short exact sequences).
A short exact sequence of groups is a sequence

{e} f1−→ N
f2−→ G

f3−→ Q
f4−→ {e}

of groups and group homomorphism such that imfi = kerfi+1 for i = 1, 2, 3.

1. Show that imfi = kerfi+1 for i = 1, 2, 3 holds if and only if f2 is injective, if imf2 =
kerf3 and if f3 is surjective.

2. Show that N is a normal subgroup of G and that G/N ' Q in case of a short exact
sequence.



Exercise 26.
Calculate all orbits and stabilizers for the action of D4 on itself by conjugation.

Exercise 27 (Commutator subgroup).
The commutator of two elements a, b ∈ G is [a, b] = aba−1b−1. The commutator subgroup
of G is the subgroup [G,G] generated by the commutators [a, b] of all pairs of elements a
and b of G.

1. Show that [a, b] = e if and only if ab = ba. Conclude that [G,G] = {e} if and only if
G is abelian.

2. Show that c[a, b]c−1 = [cac−1, cbc−1] and conclude that [G,G] is a normal subgroup
of G.

3. Show that the quotient group Gab = G/[G,G] is abelian.

4. Show that Gab together with the projection π : G → Gab satisfies the following
universal property: for every group homomorphism f : G→ H into an abelian group
H, there exists a unique group homomorphism fab : Gab → H such that f = fab ◦ π:

G
∀ f //

π
��

H

Gab
∃! fab
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