Exercises for Algebra 1
List 0
Solutions are not to hand in

Let G be a group with neutral element e.

Exercise 1 (Uniqueness of the neutral element and inverses).

1. Let $e^{\prime} \in G$ be an element such that $e^{\prime} a=a$ for all $a \in G$. Then $e^{\prime}=e$.
2. Let $a, b \in G$ be elements such that $a b=e$. Then $b=a^{-1}$.
3. Show that $(a b)^{-1}=b^{-1} a^{-1}$ for all $a, b \in G$.

Exercise 2 (Properties of group homomorphisms).
Let $f: G \rightarrow H$ be a group homomorphism. Show that $f(e)=e$ and that $f(a)^{-1}=f\left(a^{-1}\right)$. Show that f is an isomorphism if and only if there exists a group homomorphism $g: H \rightarrow G$ such that $f \circ g$ is the identity map on H and such that $g \circ f$ is the identity map on G.

Exercise 3 (Properties of subgroups).
Let H be a subset of G. Show that H is a subgroup of G if and only if $e \in H, m(H \times H) \subset H$ and $i(H) \subset H$. In other words, H is a subgroup if and only if it is a group with respect to the restrictions of m and i to H.

Exercise 4 (The center).
Show that the center of G

$$
Z(G)=\{a \in G \mid a b=b a \text { for all } b \in G\}
$$

is a subgroup of G. Show that $Z(G)$ is commutative. Show that $Z(G)$ is normal. Is every commutative subgroup normal?

Exercise 5 (The subgroup generated by a subset).

1. Let $\left\{H_{i}\right\}_{i \in I}$ be a family of subgroups of G. Show that the intersection $\bigcap_{i \in I} H_{i}$ is a subgroup of G.
2. Let $S \subset G$ be a subset. Show that

$$
\bigcap_{H<G \text { with } S \subset H} H=\left\{a_{1} a_{2}^{-1} \cdots a_{2 n-1} a_{2 n}^{-1} \mid n \geq 1 \text { and } a_{1}, \ldots, a_{n} \in S \cup\{e\}\right\}
$$

and conclude that there is a unique smallest subgroup $\langle S\rangle$ of G that contains S.

Exercise 6 (Orders of elements in abelian groups).
Let G be an abelian group and $a, b \in G$. Then ord $a b$ is a divisor ord $a \cdot \operatorname{ord} b$. Is this also true if G is not abelian?

Exercise 7 (Cyclic groups and the Klein four-group).

1. Classify all cyclic groups up to isomorphism. Which of them are abelian?
2. Show that a cyclic group of order n has a unique subgroup of order d for each divisor d of n.
3. Is the Klein four-group $V=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ cyclic? Is it abelian?

Exercise 8 (Dihedral groups).
Let D_{n} be the group of symmetries of a regular polygon with n sides. Show that $D_{n}=\langle r, s\rangle$ where r is a rotation around the center of the polygon by an angle of $2 \pi / n$ and s is the reflection at a line passing through the center of the polygon and one of its vertices. What is the number of elements of D_{n} ? Show that $D_{3} \simeq S_{3}$, and that for $n \geq 4$, the dihedral group D_{n} is not isomorphic to a symmetric group.

Exercise 9 (Symmetric groups).
The symmetric group S_{n} is the group of permutations of the numbers $1, \ldots, n$, together with composition as multiplication, i.e. $\sigma \cdot \tau=\sigma \circ \tau$. An element σ of S_{n} is called a cycle (of length $l)$ if ord $\sigma=l$ and if there is an $i \in\{1, \ldots, n\}$ such that $\sigma(j)=j$ if $j \notin\left\{i, \sigma(i), \ldots, \sigma^{l-1}(i)\right\}$; we write $\sigma=\left(i, \sigma(i), \ldots, \sigma^{l-1}(i)\right)$ in this case.

1. Show that $\left(i, \ldots, \sigma^{l-1}(i)\right)=\left(j, \ldots, \sigma^{l-1}(j)\right)$ if $j=\sigma^{n}(i)$ for some $n \geq 0$.
2. Two cycles $\sigma=\left(i, \ldots, \sigma^{l-1}(i)\right)$ and $\tau=\left(j, \ldots, \tau^{k-1}(j)\right)$ are called disjoint if the sets $\left\{i, \ldots, \sigma^{l-1}(i)\right\}$ and $\left\{j, \ldots, \tau^{k-1}(j)\right\}$ are disjoint. Show that σ and τ are disjoint if and only if $\sigma \tau=\tau \sigma$.
3. Show that every element of S_{n} can be written as a product of disjoint cycles.
4. A transposition is a cycle (i, j) of length 2 . Show that every element of S_{n} can be written as a product of transpositions.

Exercise 10 (The signum).
Let σ be an element of S_{n} and $\sigma=\tau_{n} \circ \cdots \circ \tau_{1}$ and $\sigma=\tau_{m}^{\prime} \circ \cdots \circ \tau_{1}^{\prime}$ two representations of σ as a product of transpositions $\tau_{1}, \ldots, \tau_{n}$ and $\tau_{1}^{\prime}, \ldots, \tau_{m}^{\prime}$.

1. Show that $n-m$ is even. Conclude that the map sign : $S_{n} \rightarrow\{ \pm 1\}$ that sends σ to $(-1)^{n}$ is well-defined.
2. Show that sign is a group homomorphism.

Exercise 11 (Theorem of Cayley).
Let $G=\left\{a_{1}, \cdots, a_{n}\right\}$ be of finite order n. Define the map $f: G \rightarrow S_{n}$ that sends a_{l} to the permutation σ_{l} with $\sigma_{l}(i)=j$ such that $a_{l} a_{i}=a_{j}$. Show that f is an injective group homomorphism. Conclude that every finite group is isomorphic to a subgroup of a symmetric group.

Exercise 12 (The alternating group).
The alternating group A_{n} is defined as the kernel of sign : $S_{n} \rightarrow\{ \pm 1\}$. A group G is called simple if $G \neq\{e\}$ and if the only normal subgroups of G are $\{e\}$ and G.

1. Show that a cyclic group G of order n is simple if and only if n is a prime number.
2. Show that A_{3} is simple. Show that A_{4} is not simple. What about A_{1} and A_{2} ?
3. Show that A_{n} is simple for $n \geq 5 .{ }^{1}$

Exercise 13 (Quaternion group).
The quaternion group Q consists of the elements $\{ \pm 1, \pm i, \pm j, \pm k\}$, and the multiplication is determined by the following rules: 1 is the neutral element, $(-1)^{2}=1$ and

$$
i^{2}=j^{2}=k^{2}=-1, \quad(-1) i=-i, \quad(-1) j=-j, \quad(-1) k=-k, \quad i j=k=-j i .
$$

1. Is Q abelian?
2. Describe all subgroups of Q.
3. Which subgroups are normal? What are the respective quotient groups?

Exercise 14.

Classify all groups with 6 elements and all groups with 8 elements up to isomorphism.

Exercise 15 (Transitivity of index).
Let H be a subgoup of G and K a subgroup of H. Show that $(G: K)=(G: H)(H: K)$.

Exercise 16 (Quotients by non-normal subgroups).
Let H be subgroup of G. Show that the association $([a],[b]) \mapsto[a b]$ is not well-defined on cosets $[a],[b] \in G / H$ if H is not normal in G.

Exercise 17 (Alternative characterization of normal subgroups).
A subgroup H of G is normal if and only if $g \mathrm{Hg}^{-1} \subset H$ for every $g \in G$.

Exercise 18 (Exercises on normal subgroups).
Show the following statements.

1. Every subgroup of index 2 is normal.
2. Every subgroup of an abelian group is normal. Is there a nonabelian group G such that every subgroup H of G is normal?
3. The intersection of two normal subroups is a normal subgroup. If both normal subgroups have finite index, then their intersection has also finite index.
[^0]Exercise 19 (Universal property of the quotient).
Let N be a normal subgroup of G. Show that the quotient map $\pi: G \rightarrow G / N$ satisfies the following universal property: for every group homomorphism $f: G \rightarrow H$ with $f(a)=e$ for $a \in N$ there exists a unique group homomorphism $g: G / N \rightarrow H$ such that $f=g \circ \pi$:

Exercise 20 (Universal property of the product).
Let $\left\{G_{i}\right\}_{i \in I}$ be a family of groups and $G=\prod G_{i}$ their product.

1. Show that the map $\pi_{i}: G \rightarrow G_{i}$ that sends $\left(g_{i}\right)_{i \in I}$ to g_{i} is a surjecive group homomorphism for every $i \in I$. These maps are called the canonical projections.
2. Show that the product together with the canonical projections satisfies the following universal property: for every family of group homomorphisms $\left\{f_{i}: H \rightarrow G_{i}\right\}_{i \in I}$, there is a unique group homomorphism $f: H \rightarrow \prod G_{i}$ such that $f_{i}=\pi_{i} \circ f$ for every $i \in I$:

Exercise 21 (Universal property of the direct sum).
Let $\left\{G_{i}\right\}_{i \in I}$ be a family of abelian groups and $G=\bigoplus G_{i}$ their direct sum.

1. Show that the map $\iota_{i}: G_{i} \rightarrow G$ that sends g to $\left(g_{j}\right)_{j \in I}$ with $g_{i}=g$ and $g_{j}=e_{j}$ for $j \neq i$ is an injective group homomorphism for every $i \in I$. These maps are called the canonical injections.
2. Show that the direct sum together with the canonical injections satisfies the following universal property: for every family of group homomorphisms $\left\{f_{i}: G_{i} \rightarrow H\right\}_{i \in I}$ of abelian groups, there is a unique group homomorphism $f: \bigoplus G_{i} \rightarrow H$ such that $f_{i}=f \circ \iota_{i}$ for every $i \in I$:

3. Is the same true if H is a non-abelian group?

Exercise 22 (Some group actions).
Show that the following maps are group actions.

1. $S_{n} \times\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, with $\sigma . i=\sigma(i)$.
2. $\mathrm{GL}_{n}(\mathbb{R}) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $g . v=g \cdot v$ (usual matrix multiplication).
3. $\mathbb{R}^{\times} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, with $a \cdot v=a \cdot v$ (scalar multiplication).
4. The permutation of the vertices of a regular n-gon by elements of the dihedral group D_{n}.

Exercise 23 (Center and centralizer).

1. Show that the definitions of the center $Z(G)$ from the lecture and Exercise 4 agree, i.e. that

$$
\{x \in G \mid \mathcal{O}(x)=\{x\}\}=\{a \in G \mid a b=b a \text { for all } b \in G\}
$$

where the orbit $\mathcal{O}(x)$ is taking w.r.t. the action of G on G by conjugation.
2. Show that $C_{G}(x)=\{a \in G \mid a x=x a\}$.
3. Show that

$$
Z(G)=\bigcap_{x \in G} C_{G}(x) .
$$

Exercise 24 (Normalizer).
Let H be a subgroup of G. Show that its normalizer $\operatorname{Norm}_{G}(H)$ is the largest subgroup of G containing H such that H is a normal subgroup of $\operatorname{Norm}_{G}(H)$. Show further that the following properties are equivalent:

1. H is normal in G;
2. $\operatorname{Norm}_{G}(H)=G$;
3. H is a fixed point for the action of G on the set of all subgroups of G by conjugation.

Exercise 25 (Short exact sequences).
A short exact sequence of groups is a sequence

$$
\{e\} \xrightarrow{f_{1}} N \xrightarrow{f_{2}} G \xrightarrow{f_{3}} Q \xrightarrow{f_{4}}\{e\}
$$

of groups and group homomorphism such that $\operatorname{im} f_{i}=\operatorname{ker} f_{i+1}$ for $i=1,2,3$.

1. Show that $\operatorname{im} f_{i}=\operatorname{ker} f_{i+1}$ for $i=1,2,3$ holds if and only if f_{2} is injective, if $\operatorname{im} f_{2}=$ $\operatorname{ker} f_{3}$ and if f_{3} is surjective.
2. Show that N is a normal subgroup of G and that $G / N \simeq Q$ in case of a short exact sequence.

Exercise 26.

Calculate all orbits and stabilizers for the action of D_{4} on itself by conjugation.

Exercise 27 (Commutator subgroup).
The commutator of two elements $a, b \in G$ is $[a, b]=a b a^{-1} b^{-1}$. The commutator subgroup of G is the subgroup $[G, G]$ generated by the commutators $[a, b]$ of all pairs of elements a and b of G.

1. Show that $[a, b]=e$ if and only if $a b=b a$. Conclude that $[G, G]=\{e\}$ if and only if G is abelian.
2. Show that $c[a, b] c^{-1}=\left[c a c^{-1}, c b c^{-1}\right]$ and conclude that $[G, G]$ is a normal subgroup of G.
3. Show that the quotient group $G^{\mathrm{ab}}=G /[G, G]$ is abelian.
4. Show that $G^{\text {ab }}$ together with the projection $\pi: G \rightarrow G^{\mathrm{ab}}$ satisfies the following universal property: for every group homomorphism $f: G \rightarrow H$ into an abelian group H, there exists a unique group homomorphism $f^{\text {ab }}: G^{\mathrm{ab}} \rightarrow H$ such that $f=f^{\mathrm{ab}} \circ \pi$:

[^0]: ${ }^{1}$ This exercise is more difficult than others, but solutions can be found in the literature.

