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Exercise 1.
Let ζn be a primitive n-root of unity. Show that the discriminant of Q(ζn) over Q is

d(1, . . . , ζϕ(n)−1n ) = (−1)ϕ(n)/2 · nϕ(n) ·
∏
p|n

p−ϕ(n)/(p−1)

where the product ranges over all prime numbers p dividing n.

Exercise 2.
Let A be a Dedekind domain and K = FracA. Let L/K be a separable field extension
with normal closure N . Let B and C be the integral closures of A in L and N , re-
spectively. Let G = Gal(N/K) be the Galois group of N over K and H the subgroup
H = Gal(N/L) that fixes L = NH . Let p be a prime ideal of A and pB =

∏r
i=1 q

ei be
the prime decomposition in B. Let Gq be the decomposition group of q ∈ {q1, . . . , qr}
in N over K.

1. Show that
H \G/Gp −→ {q1, . . . , qr}

[τ ] 7−→ τ(q)

is a well-defined bijection.

2. Let pC =
∏

q̃ẽ the prime decomposition in C, fi be the inertia degree of qi over p
and f̃ the inertia degree of q̃i over p. Show that ei|ẽ and fi|f̃ for all i.

Exercise 3.
Let L be the normal closure of K3 = Q( 3

√
2) over Q and G = Gal(L/Q) the Galois group

of L over Q.

1. Determine all subgroups of G and the corresponding subfields of L. What is the
unique quadratic number field K2 that is contained in L?

2. Calculate the prime decompositions of 2, 3, 5 and 7 in K2 and recall Exercise 4.6.

3. Determine the ramification indices and the inertia degrees of 2, 3, 5 and 7 in L.

Exercise 4 (Class group calculation 1).

1. Show that for D ∈ {−7,−3,−2,−1, 2, 3, 5, 13}, the class group of Q(
√
D) is trivial.

Hint: Calculate the Minkowski bound of Q(
√
D) and use Exercise 6.

2. Show that Q(
√
−5) has class group Z/2Z and that Q( 3

√
2) has trivial class group.

Hint: The Minkowski bound shows that it is enough to inspect in both cases the
primes ideals above (2). This can be done by the same techniques as explained in
Exercise 5.



Exercise 5 (Class group calculation 2).
Show that the class group of K = Q(

√
−14) is cyclic of order 4. You can do this along

the following steps:

1. Calculate the Minkowski bound MK and conclude that the class group is generated
by the prime ideals above 2 and 3.

2. Show that 2 ramifies in K, i.e. 2OK = q2 for a prime ideal q2 of the integers OK of
K. Thus the class of q2 has order 2 in the class group of K. Show that a2+14b2 = 2
has no integral solutions. Why does it follow that q2 is not a principal ideal?

3. Show that 3 splits into two prime ideals q3 and q′3 in OK , thus [q′3] = [q3]
−1 in

Cl(OK). Show that q3 is not principal, using the same strategy as for q2.

4. Calculate the norm of 2+
√
−14 and show that (2+

√
−14)OK decomposes as q2q

2
3

or q2(q
′
3)

2. Conclude that [q2] = [q3]
±2, that [q3] generates Cl(OK) and that its

order is 4.

∗Exercise 6 (Minkowski bound).
Let K be a number field of degree n with r real embeddings and s pairs of complex
embeddings. Let OK be its integers, dK its discriminant and KR its Minkowski space.

1. Show that
X =

{
(zτ ) ∈ KR

∣∣ ∑
τ

|zτ | < t
}

is a convex symmetric set of (canonical) volume 2rπstn/n!.

2. Show that every nonzero ideal I of OK contains a nonzero element a with∣∣NK/Q(a)
∣∣ ≤ MK · (OK : I)

where MK = n!/nn(4/π)s
√
|dK | is the so-called Minkowski bound for K.

Hint: Make use of the inequality 1/n
∑
|zτ | ≥ (

∏
|zτ |)1/n.

3. Show that every ideal class [I] ∈ Cl(OK) contains an integral ideal I0 of norm
N(I) ≤MK .

4. Show that MK ≤ (2/π)s
√
|dK |, i.e. the Minkowski bound is better than the bound

from the lecture.

∗Exercise 7.
Recall the proofs of all basic facts about localizations of rings and modules.

The starred exercises are not to hand in.


