Exercise 1.

Let $K=\mathbb{Q}[\sqrt{D}]$ be a quadratic number field. Determine a fundamental unit ϵ, i.e. a generator of \mathcal{O}_{K}^{\times}modulo $\{ \pm 1\}$, for $D=2,3,5,6,7,10$.

Exercise 2.

Let A be a Dedekind domain, K its fraction field, L / K a finite separable field extension of degree n. Show that B is a Dedekind domain.

Exercise 3.

Let A be a Dedekind domain, K its fraction field, L / K a finite separable field extension of degree n and B the integral closure of A in L. Show that there is for every ideal $I \subset B$ an element $b \in B$ such that the conductor of $A[b]$ is coprime to I and $L=K(b)$.

Exercise 4.

Let D be a squarefree integers different from 0 and 1 and let p be an odd prime number. Let $L=\mathbb{Q}(\sqrt{D})$ and B the integral closure of \mathbb{Z} in L.

1. Let \mathfrak{f} be the conductor of $\mathbb{Z}[\sqrt{D}]$. Show that $\operatorname{gcd}((p), \mathfrak{f})=(1)$. What is $\operatorname{gcd}((2), \mathfrak{f})=$ (1)?
2. Show that

- p ramifies in $\mathbb{Q}(\sqrt{D})$ if and only if $p \mid D$;
- p splits in $\mathbb{Q}(\sqrt{D})$ if and only if $p \nmid D$ and $\left(\frac{D}{p}\right)=1$;
- p is inert in $\mathbb{Q}(\sqrt{D})$ if and only if $p \nmid D$ and $\left(\frac{D}{p}\right)=-1$.

See Exercise 7 for the definition of the Legendre symbol $\left(\frac{D}{p}\right)$.

Exercise 5.

Let p be a prime number. Show that

- p ramifies in $\mathbb{Z}[i]$ if and only if $p=2$;
- p splits in $\mathbb{Z}[i]$ if and only if $p \equiv 1(\bmod 4)$;
- p is inert in $\mathbb{Z}[i]$ if and only if $p \equiv 3(\bmod 4)$;

Compare this result with Exercise 4.

Exercise 6.

1. Show that $\mathbb{Z}[\sqrt[3]{2}]$ is the ring of algebraic integers of $\mathbb{Q}(\sqrt[3]{2})$.
2. What is the conductor of $\mathbb{Z}[\sqrt[3]{2}]$ (w.r.t. \mathbb{Z})?
3. Determine the prime decompositions of the ideals $2 B, 3 B, 5 B$ and $7 B$ in $B=$ $\mathbb{Z}[\sqrt[3]{2}]$.

Hint: Part 1 can be solved as follows. Let $\delta=\sqrt[3]{2}$. If $f=T^{3}+c_{2} T^{2}+c_{1} T+c_{0}$ is the minimal polynomial of an element $z=a+b \delta+c \delta^{2} \in \mathbb{Q}(\delta)$ with $a, b, c \in \mathbb{Q}$, then $c_{2}=3 a$, $c_{1}=3 a^{2}-6 b c$ and $c_{0}=a^{3}+2 b^{3}+4 c^{3}-6 a b c$. Consider c_{2}, c_{1}, c_{0} for $z, \delta z$ and $\delta^{2} z$ to show that $c_{2}, c_{1}, c_{0} \in \mathbb{Z}$ only if $a, b, c \in \mathbb{Z}$.
*Exercise 7 (Legendre symbols).
For an odd prime number p and $a \in \mathbb{Z}$, we define the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } \bar{a} \text { is a square in } \mathbb{F}_{p}^{\times}, \\ -1 & \text { if } \bar{a} \text { is in } \mathbb{F}_{p}^{\times}, \text {but not a square }, \\ 0 & \text { if } \bar{a}=0 \text { in } \mathbb{F}_{p} .\end{cases}
$$

1. Show that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ for $a, b \in \mathbb{Z}$.
2. Show that $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)$.
*Exercise 8 (Gaussian reciprocity law). Find as many different proofs as possible (in the literature) for the Gaussian reciprocity law:

$$
\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

for two different odd prime numbers p and q.

*Exercise 9.

Recall the proof of the main theorem of Galois theory.

[^0]
[^0]: The starred exercises are not to hand in.

