Exercise 1.

Which of the following numbers are algebraic integers?

$$
\sqrt{2}, \quad \frac{1}{2}, \quad \sqrt{\frac{1}{2}}, \quad \frac{1+\sqrt{5}}{2}, \quad \frac{3+2 \sqrt{6}}{1-\sqrt{6}}
$$

Exercise 2.

Every unique factorization domain is integrally closed. Conclude that \mathbb{Z} is integrally closed in \mathbb{Q}.

Exercise 3.

Let L / K be a separable field extension of degree n with basis $\left(1, a, \ldots, a^{n-1}\right)$ for some $a \in L$. Then $d\left(1, a, \ldots, a^{n-1}\right)=\prod_{i<j}\left(a_{i}-a_{j}\right)^{2}$.

Exercise 4. Let L be a number field and \mathcal{O}_{L} its integers.

1. Let M be a non-trivial finitely generated \mathcal{O}_{L}-submodule of L. Show that the discriminant $d(M)=d\left(b_{1}, \ldots, b_{n}\right)$ of M does not depend on the choice of a \mathbb{Z} basis $\left(b_{1}, \ldots, b_{n}\right)$ of M.
2. Let $M \subset M^{\prime}$ be two non-trivial finitely generated $\mathcal{O}_{L^{-}}$-submodules of L. Show that the index $\left(M^{\prime}: M\right)$ is finite and that $d(M)=\left(M^{\prime}: M\right)^{2} d\left(M^{\prime}\right)$.

Exercise 5.

1. Show that every quadratic extension of \mathbb{Q} is of the form $\mathbb{Q}[\sqrt{D}]$ with $D \in \mathbb{Z}$.
2. Let $D \in \mathbb{Z}$ be squarefree and different from 0 and 1 . Consider $L=\mathbb{Q}[\sqrt{D}]$ and its integers \mathcal{O}_{L}. Show that a basis of \mathcal{O}_{L} over \mathbb{Z} is given by

$$
\begin{array}{ll}
\{1, \sqrt{D}\} & \text { if } D \equiv 2 \text { or } 3(\bmod 4), \\
\{1,(1+\sqrt{D}) / 2\} & \text { if } D \equiv 1(\bmod 4) .
\end{array}
$$

3. Calculate the discriminant of L in either case.

Hint: Use the norm and trace to calculate the minimal polynomial of an element $a \in L$.
*Exercise 6. Verify all properties of norm and trace as claimed in Proposition 2 of the lecture. To keep the proofs simple, you may assume that all field extensions are separable.
*Exercise 7 (Chinese Remainder theorem).
Let A be a ring, I_{1}, \ldots, I_{n} be ideals of R with $I_{i}+I_{j}=A$ for $i \neq j$ and $J=\bigcap_{i=1}^{n} I_{i}$. Then there is a canonical isomorphism of rings

$$
A / J \xrightarrow{\sim} \bigoplus_{i=1}^{n} A / I_{i}
$$

*Exercise 8. Let $f: A \rightarrow B$ be a ring homomorphism and I an ideal of B. Show that $f^{-1}(I)$ is an ideal of A, and show that if I is a prime ideal, then so is $f^{-1}(I)$. Is the converse statement true?

* Exercise 9. Let A be a ring. Show that the A-submodules of A are precisely the ideals of A.
*Exercise 10. Let A be a ring, $a, b \in A$ and $I, J \subset A$ ideals.

1. Show that $a \mid b$ if and only if $(a) \mid(b)$.
2. Show that $I \cap J \mid I \cdot J$. Is the converse true?
3. Show that $I \cap J$ is the least common multiple of I and J.
4. Show that $I+J$ is the greatest common divisor of I and J.
[^0]
[^0]: The starred exercises are not to hand in.

