Exercises for Algebra II
Series 8
Not to hand in!

Instituto Nacional de Matemática Pura e Aplicada
Carolina Araujo and Oliver Lorscheid Roberto Alvarenga Jr. (monitor)

*Exercise 1.

Let ζ_{n} be a primitive n-th root of unity.

1. Determine its minimal polynomial over \mathbb{Q} and the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ for $n=1, \ldots, 20$.
2. Calculate $\mathrm{N}_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}\left(\zeta_{n}\right)$ and $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}}\left(\zeta_{n}\right)$.
3. Find all $n \geq 0$ such that $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ is quadratic.
4. Determine all subfields of $\mathbb{Q}\left(\zeta_{n}\right)$ for your 5 favorite values of n.

*Exercise 2.

Let K be $\mathbb{Q}, \mathbb{F}_{3}$ or $\mathbb{F}_{5}, n=3$ or 4 and $a=1,2$ or 3 . Consider the polynomial $f=T^{n}-a$ in $K[T]$ and its splitting field L over K.

1. Is L / K separable? If so, calculate $\operatorname{Gal}(L / K)$.
(Remark: Notice the different outcomes for $\operatorname{Gal}(L / K)$ if K or a varies.)
2. Determine all intermediate fields E of L / K and find primitive elements for E / K.
3. Which of the subextensions F / E (with $K \subset E \subset F \subset L$) are separable, normal, cyclic, cyclotomic, abelian, solvable, Kummer, Artin-Schreier or radical?

*Exercise 3.

Which of the following elements are constructible over \mathbb{Q} ?

1. $\sqrt{3}, \quad \sqrt{-3}, \quad \sqrt{6}, \quad \sqrt{2}+\sqrt{3}, \quad \sqrt[3]{3}, \quad \sqrt[4]{3}$.
2. ζ_{n} for $n=1, \ldots, 20$.
3. $1+\zeta_{4}, \quad \zeta_{3}+\zeta_{6}, \quad \zeta_{3}+\zeta_{9}, \quad \zeta_{6}+\zeta_{6}^{-1}, \quad \zeta_{9}+\zeta_{9}^{-1}, \quad \zeta_{9}+\zeta_{9}^{4}+\zeta_{9}^{7}, \quad \zeta_{7}+\zeta_{7}^{-1}, \quad \zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4}$.

Let a be any of the above elements and L the normal closure of $\mathbb{Q}(a) / \mathbb{Q}$. Calculate $N_{L / \mathbb{Q}}(a)$ and $\operatorname{Tr}_{L / \mathbb{Q}}(a)$.
*Exercise 4. Give three examples and three non-examples for the following types of extensions: algebraic, transzendental, separable, purely inseparable, normal, Galois, cyclic, cyclotomic, abelian, solvable, Kummer, Artin-Schreier and radical.

*Exercise 5.

How many primitive elements has \mathbb{F}_{8} over \mathbb{F}_{2} ?

* Exercise 6.

Find normal bases for the following extensions: $\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}, \quad \mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}, \quad \mathbb{F}_{4} / \mathbb{F}_{2}$ and $\mathbb{F}_{8} / \mathbb{F}_{2}$.

*Exercise 7.

Consider the purely transcendental extension $K=\mathbb{F}_{3}(x) / \mathbb{F}_{3}$ of transcendence degree 1 , and let \bar{K} be an algebraic closure of K. Let $a \in \bar{K}$ be a root of $f=T^{3}-x$ and $b \in \bar{K}$ a root of $g=T^{2}-2$. Find the separable closure E of K in $K(a, b)$. What are the degrees $[K(a, b): E]$ and $[E: K]$? What are the corresponding separable degrees and inseparable degrees?

*Exercise 8.

Solve all exercises of Chapters V and VI of Lang's "Algebra".

