*Exercise 1.

Let ζ_n be a primitive *n*-th root of unity.

- 1. Determine its minimal polynomial over \mathbb{Q} and the Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ for $n = 1, \ldots, 20$.
- 2. Calculate $N_{\mathbb{Q}(\zeta_n)/\mathbb{Q}}(\zeta_n)$ and $\operatorname{Tr}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}}(\zeta_n)$.
- 3. Find all $n \ge 0$ such that $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is quadratic.
- 4. Determine all subfields of $\mathbb{Q}(\zeta_n)$ for your 5 favorite values of n.

*Exercise 2.

Let K be \mathbb{Q} , \mathbb{F}_3 or \mathbb{F}_5 , n = 3 or 4 and a = 1, 2 or 3. Consider the polynomial $f = T^n - a$ in K[T] and its splitting field L over K.

- 1. Is L/K separable? If so, calculate $\operatorname{Gal}(L/K)$. (*Remark:* Notice the different outcomes for $\operatorname{Gal}(L/K)$ if K or a varies.)
- 2. Determine all intermediate fields E of L/K and find primitive elements for E/K.
- 3. Which of the subextensions F/E (with $K \subset E \subset F \subset L$) are separable, normal, cyclic, cyclotomic, abelian, solvable, Kummer, Artin-Schreier or radical?

*Exercise 3.

Which of the following elements are constructible over \mathbb{Q} ?

- 1. $\sqrt{3}$, $\sqrt{-3}$, $\sqrt{6}$, $\sqrt{2} + \sqrt{3}$, $\sqrt[3]{3}$, $\sqrt[4]{3}$.
- 2. ζ_n for n = 1, ..., 20.
- 3. $1+\zeta_4$, $\zeta_3+\zeta_6$, $\zeta_3+\zeta_9$, $\zeta_6+\zeta_6^{-1}$, $\zeta_9+\zeta_9^{-1}$, $\zeta_9+\zeta_9^4+\zeta_9^7$, $\zeta_7+\zeta_7^{-1}$, $\zeta_7+\zeta_7^2+\zeta_7^4$.

Let a be any of the above elements and L the normal closure of $\mathbb{Q}(a)/\mathbb{Q}$. Calculate $N_{L/\mathbb{Q}}(a)$ and $\operatorname{Tr}_{L/\mathbb{Q}}(a)$.

*Exercise 4. Give three examples and three non-examples for the following types of extensions: algebraic, transzendental, separable, purely inseparable, normal, Galois, cyclic, cyclotomic, abelian, solvable, Kummer, Artin-Schreier and radical.

*Exercise 5.

How many primitive elements has \mathbb{F}_8 over \mathbb{F}_2 ?

*Exercise 6.

Find normal bases for the following extensions: $\mathbb{Q}(\zeta_3)/\mathbb{Q}$, $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$, $\mathbb{F}_4/\mathbb{F}_2$ and $\mathbb{F}_8/\mathbb{F}_2$.

*Exercise 7.

Consider the purely transcendental extension $K = \mathbb{F}_3(x)/\mathbb{F}_3$ of transcendence degree 1, and let \overline{K} be an algebraic closure of K. Let $a \in \overline{K}$ be a root of $f = T^3 - x$ and $b \in \overline{K}$ a root of $g = T^2 - 2$. Find the separable closure E of K in K(a, b). What are the degrees [K(a, b) : E] and [E : K]? What are the corresponding separable degrees and inseparable degrees?

*Exercise 8.

Solve all exercises of Chapters V and VI of Lang's "Algebra".