Exercises for Algebra II
Series 7
To hand in until 21.9.

Instituto Nacional de Matemática Pura e Aplicada
Carolina Araujo and Oliver Lorscheid Roberto Alvarenga Jr. (monitor)

Exercise 1.

Let K be a field and L the splitting field of a cubic polynomial f over K. Assume that L / K is separable. Show that there is a subfield E of L such that $K \subset E \subset L$ is a tower of elementary radical extensions (with possibly $L=E$ or $E=K$). In which situations are E / K and L / E cyclotomic, Kummer and Artin-Schreier? What are E and L if $K=\mathbb{Q}$ and $f=T^{3}-b \in \mathbb{Q}[T]$?

Exercise 2.

Show that there is a solvable extension L / K that not radical.
Hint: Conclude from the previous exercise that the splitting field of a polynomial $f=$ $T^{3}-b$ has even degree over \mathbb{Q} if it is not equal to \mathbb{Q}. Show that $\zeta_{7}+\zeta_{7}^{-1}$ generates a cyclic extension L over \mathbb{Q} of degree 3. Conclude that L / \mathbb{Q} is an example with the desired properties.

Exercise 3.

Which roots of the following polynomials are construcible over \mathbb{Q} ?

1. $f_{1}=T^{4}-2$
2. $f_{2}=T^{4}-T$
3. $f_{3}=T^{4}-2 T$

Exercise 4.

Let K be a subfield of \mathbb{C} and a a root of $T^{2}-b \in K[T]$. Show that every element of $K(a)$ is constructible over K. Use this to explain the relationship between the two definitions of constructible numbers from sections 1.1 and 4.7 of the lecture.

*Exercise 5. ${ }^{1}$

Let $\mathbb{F}_{p}[x, y]$ be the polynomial ring in two variables x and y and $\mathbb{F}_{p}(x, y)$ its fraction field. Let $\sqrt[p]{x}$ be a root of $T^{p}-x$ and $\sqrt[p]{y}$ be a root of $T^{p}-y$.

1. Show that $\mathbb{F}_{p}(\sqrt[p]{x}, \sqrt[p]{y})$ is a field extension of $\mathbb{F}_{p}(x, y)$ of degree p^{2}.
2. Show that $a^{p} \in \mathbb{F}_{p}(x, y)$ for every $a \in \mathbb{F}_{p}(\sqrt[p]{x}, \sqrt[p]{y})$.
3. Conclude that the field extension $\mathbb{F}_{p}(\sqrt[p]{x}, \sqrt[p]{y}) / \mathbb{F}_{p}(x, y)$ has no primitive element and that it has infinitely many intermediate extensions.
[^0]
[^0]: ${ }^{1}$ The starred exercises are not to hand in. But it is advised to work on these exercises, and possibly to discuss them in the exercise class.

