Exercise 1. Let L/K be a Galois extension and let

be the K-linear map associated with an element $a \in L$. Show that the trace of M_a equals $\operatorname{Tr}_{L/K}(a)$ and that the determinant of M_a equals $\operatorname{N}_{L/K}(a)$.

Hint: Use Exercise 1 from List 2.

Exercise 2. Let *L* be the splitting field of $T^3 - 2$ over \mathbb{Q} . Show that $\sqrt[3]{2}$, $\sqrt{-3}$ and ζ_3 are elements of *L*. Calculate $N_{L/\mathbb{Q}}(a)$ and $\operatorname{Tr}_{L/\mathbb{Q}}(a)$ for $a = \sqrt[3]{2}$, $a = \sqrt{-3}$ and $a = \zeta_3$. Calculate $N_{\mathbb{Q}}(\zeta_3)/\mathbb{Q}}(\zeta_3)$ and $\operatorname{Tr}_{\mathbb{Q}}(\zeta_3)/\mathbb{Q}}(\zeta_3)$.

Exercise 3.

Let L be the splitting field of $f = T^4 - 3$ over \mathbb{Q} . What is the Galois group of L/\mathbb{Q} ? Make a diagram of all subgroups of $\operatorname{Gal}(L/K)$ that illustrates which subgroups are contained in others. Which of the subextensions of L/\mathbb{Q} are elementary radical? Is L/\mathbb{Q} radical?

Hint: Find the four complex roots a_1, \ldots, a_4 of f. Which permutations of a_1, \ldots, a_4 extend to field automorphisms of L?

Exercise 4.

Let K be a field and L the splitting field of a polynomial f over K of degree 4. Show that L/K is solvable if it is separable.