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Exercise 1.
Calculate the Galois groups of the splitting fields of the following polynomials over Q.

1. f1 = T 3 − 1;

2. f2 = T 3 − 2;

3. f3 = T 3 + T 2 − 2T − 1.

Hint: If ζ is a 7-th root of 1 (different from 1), then ζi+ζ7−i is a root of f3 for i = 1, 2, 3.

Exercise 2.
Show that Q(

√
2, i)/Q is Galois. What is the Galois group? Make a diagram of all

subgroups of Gal(Q(
√

2, i)/Q) that illustrates which subgroups are contained in others.
Use this to determine all intermediate extensions of Q(

√
2, i)/Q.

Exercise 3.
Let K be a field and G a finite subgroup of the multiplicative group K×. Show that G
is cyclic, which can be done along the following lines.

1. Let ϕ(d) be the number of generators of a cyclic group of order d. Show for n ≥ 1
that ∑

d|n

ϕ(d) = n.

Remark: The function ϕ(d) is called Euler’s ϕ-function.

2. Let Gd ⊂ G be the subset of elements of order d. Show that Gd is empty if d is
not a divisor of n and that Gd has exactly ϕ(d) elements if it is not empty.

Hint: Use that T d − 1 has at most d roots in a field.

3. Let n be the cardinality of G. Conclude that G must have an element of order n
and that G is cyclic.

Exercise 4.

1. Find a finite separable (but not normal) field extension L/K that does not satisfy
the Galois correspondence.

2. Find a finite normal (but not separable) field extension L/K that does not satisfy
the Galois correspondence.

3. (Bonus) Find a normal and separable (but not finite) field extension L/K that
does not satisfy the Galois correspondence.


