Exercises for Algebra II Series 4 To hand in until 31.8.

Exercise 1.

Calculate the Galois groups of the splitting fields of the following polynomials over \mathbb{Q} .

- 1. $f_1 = T^3 1;$
- 2. $f_2 = T^3 2;$
- 3. $f_3 = T^3 + T^2 2T 1$.

Hint: If ζ is a 7-th root of 1 (different from 1), then $\zeta^i + \zeta^{7-i}$ is a root of f_3 for i = 1, 2, 3.

Exercise 2.

Show that $\mathbb{Q}(\sqrt{2}, i)/\mathbb{Q}$ is Galois. What is the Galois group? Make a diagram of all subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, i)/\mathbb{Q})$ that illustrates which subgroups are contained in others. Use this to determine all intermediate extensions of $\mathbb{Q}(\sqrt{2}, i)/\mathbb{Q}$.

Exercise 3.

Let K be a field and G a finite subgroup of the multiplicative group K^{\times} . Show that G is cyclic, which can be done along the following lines.

1. Let $\varphi(d)$ be the number of generators of a cyclic group of order d. Show for $n \ge 1$ that

$$\sum_{d|n} \varphi(d) = n$$

Remark: The function $\varphi(d)$ is called *Euler's* φ *-function.*

2. Let $G_d \subset G$ be the subset of elements of order d. Show that G_d is empty if d is not a divisor of n and that G_d has exactly $\varphi(d)$ elements if it is not empty.

Hint: Use that $T^d - 1$ has at most d roots in a field.

3. Let n be the cardinality of G. Conclude that G must have an element of order n and that G is cyclic.

Exercise 4.

- 1. Find a finite separable (but not normal) field extension L/K that does not satisfy the Galois correspondence.
- 2. Find a finite normal (but not separable) field extension L/K that does not satisfy the Galois correspondence.
- 3. (Bonus) Find a normal and separable (but not finite) field extension L/K that does not satisfy the Galois correspondence.