Exercises for Algebra II Series 3

To hand in until 24.8.

Instituto Nacional de Matemática Pura e Aplicada Carolina Araujo and Oliver Lorscheid Roberto Alvarenga Jr. (monitor)

Exercise 1.

Which of the field extensions $\mathbb{Q}(\zeta_3)$, $\mathbb{Q}(\sqrt[3]{2})$ and $\mathbb{Q}(\zeta_3, \sqrt[3]{2})$ of \mathbb{Q} are normal?

Exercise 2.

Let $f = X^6 + X^3 + 1 \in \mathbb{Q}[T]$ and $L = \mathbb{Q}[T]/(f)$. Show that f is irreducible and find all field homomorphisms $L \to \mathbb{C}$. Is L/\mathbb{Q} normal?

Hint: f divides $X^9 - 1$.

Exercise 3.

Proof Fermat's small theorem: If K is a field of characteristic p, then $(a+b)^p = a^p + b^p$. Conclude that $\operatorname{Frob}_p: K \to K$ with $\operatorname{Frob}_p(a) = a^p$ is a field automorphism of K.

Remark: Frob_p is called the Frobenius homomorphism in characteristic p.

Exercise 4.

Let $\mathbb{F}_p(x)$ be the quotient field of the polynomial ring $\mathbb{F}_p[x]$ in the indeterminant x, i.e. $\mathbb{F}_p(x) = \{f/g | f, g \in F_p[x] \text{ and } g \neq 0\}.$

1. Show that f is not separable over $\mathbb{F}_p(x)$.

Hint: Use Fermat's little theorem.

2. Show that $f = T^p - x$ is irreducible over $\mathbb{F}_p(x)$.

Hint: For a direct calculation, use the factorization of f over $\mathbb{F}_p(\sqrt[p]{x})$; or you can apply the Eisenstein criterium to show that f is irreducible in $\mathbb{F}_p[x,T]$ and conclude with the help of Gauss' lemma that f is irreducible in $\mathbb{F}_p(x)[T]$.

3. Conclude that $\mathbb{F}_p(\sqrt[p]{x})/\mathbb{F}_p(x)$ is not separable. Is $\mathbb{F}_p(\sqrt[p]{x})/\mathbb{F}_p(x)$ normal?

*Exercise 5. ¹

Recall the proofs of the Eisenstein criterium and Gauss' lemma, i.e. the content of fg equals the product of the contents of f and g for polynomials f,g over a unique factorization domain.

¹The starred exercises are not to hand in. But it is advised to work on these exercises, and possibly to discuss them in the exercise class.