Exercises for Algebra II
Series 2
To hand in at 17.8.2015

Instituto Nacional de Matemática Pura e Aplicada
Carolina Araujo and Oliver Lorscheid
Roberto Alvarenga Jr. (monitor)

Exercise 1.

Let L / K be a field extension and $a \in L$ algebraic over K. Let $f(T) \in K[T]$ be the minimal polynomial of a over K. Show that the minimal polynomial of the K-linear map

$$
\begin{array}{cccc}
M_{a}: & L & \longrightarrow & L \\
b & \longmapsto & a \cdot b
\end{array}
$$

is equal to f.

Exercise 2.

Let L / K be a finite field extension. Then there are elements $a_{1}, \ldots, a_{n} \in L$ such that $L=K\left(a_{1}, \ldots, a_{n}\right)$.

Exercise 3.

Let L / K be a field extension and $a_{1}, \ldots, a_{n} \in L$. Show that $K\left(a_{1}, \ldots, a_{n}\right) / K$ is algebraic if and only if a_{1}, \ldots, a_{n} are algebraic over K.

Exercise 4.

Consider the following elements $\sqrt[3]{2}$ and ζ_{3} as elements of an algebraic closure of \mathbb{Q}.

1. Show that $\sqrt[3]{2}$ is algebraic over \mathbb{Q} and find its minimal polynomial. What is the degree $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]$?
2. Let $\zeta_{3}=e^{2 \pi i / 3}$ be a primitive third root of unity, i.e. an element $\neq 1$ that satisfies $\zeta_{3}^{3}=1$. Show that ζ_{3} is algebraic over \mathbb{Q} and find its minimal polynomial. What is the degree $\left[\mathbb{Q}\left(\zeta_{3}\right): \mathbb{Q}\right]$?
3. What is the degree of $\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right)$ over \mathbb{Q} ?
