Exercises for Algebra IIInstituto Nacional de Matemática Pura e AplicadaSeries 7Oliver Lorscheid (professor)To hand in at 10.10.2014 in the exercise classJosé Ramón Madrid Padilla (monitor)

Exercise 1. Let

 $0 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 0$

be a short exact sequence of groups. Show that N and Q are solvable if and only if G is solvable.

Exercise 2.

Let L be the splitting field of a cubic polynomial f over K. Show that there is a subfield E of L such that $K \subset E \subset L$ is a tower of elementary radical extensions. What are E and L if $K = \mathbb{Q}$ and $f = T^3 - b \in \mathbb{Q}[T]$? When is E/K or L/E an Artin-Schreier extension?

Exercise 3.

Show that there is a radical extension L/K such that the normal closure L^{norm} of L over K admits no tower $K = K_0 \subset \cdots \subset K_r = L$ of elementary radical extensions. *Hint:* Conclude from the previous exercise that the splitting field of a polynomial $f = T^3 - b$ has even degree over \mathbb{Q} . Show that $\zeta_7 + \zeta_7^{-1}$ generates a cyclic extension L over \mathbb{Q} of degree 3. Conclude that L/\mathbb{Q} is an example with the desired properties.

Exercise 4. Let L/K be a Galois extension and let

be the K-linear map associated with an element $a \in L$. Show that the trace of M_a equals $\operatorname{Tr}_{L/K}(a)$ and that the norm of M_a equals $\operatorname{N}_{L/K}(a)$. Hint: Use Exercise 1 from Series 1.