Exercise 1.

Let

$$
0 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 0
$$

be a short exact sequence of groups. Show that N and Q are solvable if and only if G is solvable.

Exercise 2.

Let L be the splitting field of a cubic polynomial f over K. Show that there is a subfield E of L such that $K \subset E \subset L$ is a tower of elementary radical extensions. What are E and L if $K=\mathbb{Q}$ and $f=T^{3}-b \in \mathbb{Q}[T]$? When is E / K or L / E an Artin-Schreier extension?

Exercise 3.

Show that there is a radical extension L / K such that the normal closure $L^{\text {norm }}$ of L over K admits no tower $K=K_{0} \subset \cdots \subset K_{r}=L$ of elementary radical extensions.
Hint: Conclude from the previous exercise that the splitting field of a polynomial $f=$ $T^{3}-b$ has even degree over \mathbb{Q}. Show that $\zeta_{7}+\zeta_{7}^{-1}$ generates a cyclic extension L over \mathbb{Q} of degree 3. Conclude that L / \mathbb{Q} is an example with the desired properties.

Exercise 4. Let L / K be a Galois extension and let

$$
\begin{array}{lllc}
M_{a}: & L & \longrightarrow & L \\
& b & \longmapsto & a \cdot b
\end{array}
$$

be the K-linear map associated with an element $a \in L$. Show that the trace of M_{a} equals $\operatorname{Tr}_{L / K}(a)$ and that the norm of M_{a} equals $\mathrm{N}_{L / K}(a)$.
Hint: Use Exercise 1 from Series 1.

