Exercises for Algebra IIInstituto Nacional de Matemática Pura e AplicadaSeries 6Oliver Lorscheid (professor)To hand in at 3.10.2014 in the exercise classJosé Ramón Madrid Padilla (monitor)

Exercise 1.

Let ζ_{12} be a primitive 12-th root of unity. What is Gal($\mathbb{Q}(\zeta_{12})$? Find primitive elements for all subfields E of $\mathbb{Q}(\zeta_{12})$.

Exercise 2.

Show that there is an n_i for i = 1, 2, 3 such that the following fields E_i are contained in $\mathbb{Q}(\zeta_{n_i})$. What are the smallest values for n_i ?

1. $E_1 = \mathbb{Q}(\sqrt{2});$ 2. $E_2 = \mathbb{Q}(\sqrt{3});$ 3. $E_3 = \mathbb{Q}(\sqrt{-2});$

Exercise 3.

For $n \ge 1$, let $\mu_n = \{\zeta \in \overline{\mathbb{Q}} | \zeta^n = 1\}$. For a positive divisor d of n, define

$$f_d = \prod_{\substack{\zeta \in \mu_n \\ \text{of order } d}} (T - \zeta).$$

- 1. Show that $\prod_{d|n} f_d = T^n 1$.
- 2. Show that f_d has integral coefficients, i.e. $f_d \in \mathbb{Z}[T]$.
- 3. Let $\zeta \in \mu_n$ be of order d. Show that f_d is the minimal polynomial of ζ over \mathbb{Q} .
- 4. Conclude that deg $f_d = \varphi(d)$ and that f_d is irreducible in $\mathbb{Z}[T]$.
- 5. Show that $f_d = T^{d-1} + \cdots + T + 1$ if d is prime.
- 6. Calculate f_d for $d = 1, \ldots, 12$.

The polynomial f_d is called the *d*-th cyclotomic polynomial.

Exercise 4. Let *L* be the splitting field of $T^3 - 2$ over \mathbb{Q} . Show that $\sqrt[3]{2}$, $\sqrt{-3}$ and ζ_3 are elements of *L*. Calculate $N_{L/\mathbb{Q}}(a)$ and $\operatorname{Tr}_{L/\mathbb{Q}}(a)$ for $a = \sqrt[3]{2}$, $a = \sqrt{-3}$ and $a = \zeta_3$. Calculate $N_{\mathbb{Q}}(\zeta_3)/\mathbb{Q}}(\zeta_3)$ and $\operatorname{Tr}_{\mathbb{Q}}(\zeta_3)/\mathbb{Q}}(\zeta_3)$.