Exercise 1.

Let ζ_{12} be a primitive 12 -th root of unity. What is $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{12}\right)\right.$? Find primitive elements for all subfields E of $\mathbb{Q}\left(\zeta_{12}\right)$.

Exercise 2.

Show that there is an n_{i} for $i=1,2,3$ such that the following fields E_{i} are contained in $\mathbb{Q}\left(\zeta_{n_{i}}\right)$. What are the smallest values for n_{i} ?

1. $E_{1}=\mathbb{Q}(\sqrt{2})$;
2. $E_{2}=\mathbb{Q}(\sqrt{3})$;
3. $E_{3}=\mathbb{Q}(\sqrt{-2})$;

Exercise 3.

For $n \geq 1$, let $\mu_{n}=\left\{\zeta \in \overline{\mathbb{Q}} \mid \zeta^{n}=1\right\}$. For a positive divisor d of n, define

$$
f_{d}=\prod_{\substack{\zeta \in \mu_{n} \\ \text { of order } d}}(T-\zeta)
$$

1. Show that $\prod_{d \mid n} f_{d}=T^{n}-1$.
2. Show that f_{d} has integral coefficients, i.e. $f_{d} \in \mathbb{Z}[T]$.
3. Let $\zeta \in \mu_{n}$ be of order d. Show that f_{d} is the minimal polynomial of ζ over \mathbb{Q}.
4. Conclude that $\operatorname{deg} f_{d}=\varphi(d)$ and that f_{d} is irreducible in $\mathbb{Z}[T]$.
5. Show that $f_{d}=T^{d-1}+\cdots+T+1$ if d is prime.
6. Calculate f_{d} for $d=1, \ldots, 12$.

The polynomial f_{d} is called the d-th cyclotomic polynomial.

Exercise 4. Let L be the splitting field of $T^{3}-2$ over \mathbb{Q}. Show that $\sqrt[3]{2}, \sqrt{-3}$ and ζ_{3} are elements of L. Calculate $\mathrm{N}_{L / \mathbb{Q}}(a)$ and $\operatorname{Tr}_{L / \mathbb{Q}}(a)$ for $a=\sqrt[3]{2}, a=\sqrt{-3}$ and $a=\zeta_{3}$. Calculate $\mathrm{N}_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}\right)$ and $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}}\left(\zeta_{3}\right)$.

